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FOREWORD

Thisisthe 1997 (QA97) version ofGuidance for Data Quality Assessment. The Environmental
Protection Agency (EPA) has developed the Data Quality Assessment (DQA) Process as an important tool
for project managers and planners to determine whether the type, quantity, and quality of data needed to
support Agency decisions has been achieved. This guidance is the culmination of experiencesin the design
and statistical analyses of environmental data in different Program Offices at the EPA. Many elements of
prior guidance, statistics, and scientific planning have been incorporated into this document.

This document provides general guidance to organizations on assessing data quality criteria and
performance specifications for decision making. This guidance assumes that an appropriate Quality
System has been established and that planning for data collection has been achieved using a scientifically-
based information collection strategy. An overview of the Agency's recommended data collection
procedure, the DQO Process, is included in this guidance in Chapter 1.

Guidance for Data Quality Assessment is distinctly different from other guidance documents; it is
not intended to be read in alinear or continuous fashion. The intent of the document isfor it to be used as
a"tool-box" of useful techniques in assessing the quality of data. The overall structure of the document
will enable the analyst to investigate many different problems using a systematic methodology. The
methodology consists of five steps that should be iterated between them as necessary:

(1) Review the Data Quality Objectives
(i) Conduct a Preliminary Data Review
(i)  Select the Statistical Test

(iv) Verify the Assumptions of the Test
(V) Draw Conclusions From the Data

This approach closely parallels the activities of a statistician analyzing a data set for the first time.
The five step procedure is not intended to be a definitive analysis of a project or problem, but provide an
initial assessment on the "reasonableness’ of the data that have been generated. Sophisticated statistical
analysis is often not necessary unless special or unusual circumstances have been encountered in the
generation or collection of the data or the analysisis planned in detail before the data are collected. This
guidance is directed towards the analysis of relatively small data sets containing data that have been
collected in arelatively simple fashion. The analysis of survey data containing large data sets or a complex
sampling scheme is best left for statistical experts.

This document is a product of the collaborative effort of many quality management professionals
throughout the EPA and the environmental community. It has been peer reviewed by the EPA Program
Offices, Regiona Offices, and Laboratories. Many valuable comments and suggestions have been
incorporated to make it more useful, and additional suggestions to improve its effectiveness are sought.
The Quality Assurance Division has the Agency lead for the development of statistical quality assurance
techniques and future editions of this guidance will contain some of these recent developments.

This document is one of a series of quality management guidance documents that the EPA Quality

Assurance Division (QAD) has prepared to assist users in implementing the Agency-wide Quality System.
Other related documents currently available or planned include:
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EPA QA/G-4  Guidance for The Data Quality Objectives Process
EPA QA/G-4D DEFT Software for the Data Quality Objectives Process
EPA QA-G-4R Guidance for the Data Quality Objectives Process for Researchers (planned)

EPA QA/G-4HW Guidance for the Data Quality Objectives Process for Hazardous Waste Site
Investigations

EPA QA/G-5 Guidance for Quality Assurance Project Plans
EPA QA/G-5S Guidance on Sampling Plans (planned)

EPA QA/G-6  Guidance for the Preparation of Standard Operating Procedures (SOPs) for
Quality-Related Documents

EPA QA/G-9D Data Quality Evaluation Statistical Tools (DataQUEST)

This document is intended to be a "living document” that will be updated periodically to
incorporate new topics and revisions or refinements to existing procedures. Comments received on this
1997 version will be considered for inclusion in subsequent versions. In addition, user-friendly PC-based
software (DataQUEST) that supplements this guidance is available from QAD.

Please send your written comments onGuidance for Data Quality Assessment to:

Quality Assurance Division (8724R)
Office of Research and Development
U.S. Environmental Protection Agency
401 M Street, SW

Washington, DC 20460

(202) 564-6870

FAX (202) 565-2441

E-mail: ord-qad@epamail.epa.gov
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INTRODUCTION

0.1 PURPOSE AND OVERVIEW

Data Quality Assessment (DQA) isthe scientific and statistical evaluation of datato determine if
data obtained from environmental data operations are of the right type, quality, and quantity to support their
intended use. This guidance demonstrates how to use DQA in evaluating environmental data sets and
illustrates how to apply some graphical and statistical tools for performing DQA. The guidance focuses
primarily on using DQA in environmental decision making; however, the tools presented for preliminary data
review and verifying statistical assumptions are useful whenever environmental data are used, regardless of
whether the data are used for decision making.

DQA isbuilt on afundamental premise: data quality, asaconcept, is meaningful only when it
relates to the intended use of the data. Data quality does not exist in avacuum; one must know in what
context a data set isto be used in order to establish arelevant yardstick for judging whether or not the data set
isadequate. By using the DQA Process, one can answer two fundamental questions:

1 Can the decision (or estimate) be made with the desired confidence, given the quality of the data set?

2. How well can the sampling design be expected to perform over awide range of possible outcomes?
If the same sampling design strategy is used again for asimilar study, would the data be expected to
support the same intended use with the desired level of confidence, particularly if the measurement
results turned out to be higher or lower than those observed in the current study?

Thefirst question addresses the data user'simmediate needs. For example, if the data provide
evidence strongly in favor of one course of action over another, then the decision maker can proceed knowing
that the decision will be supported by unambiguous data. If, however, the data do not show sufficiently
strong evidence to favor one alternative, then the data analysis aerts the decision maker to this uncertainty.
The decision maker now isin a position to make an informed choice about how to proceed (such as collect
more or different data before making the decision, or proceed with the decision despite the rlatively high, but
acceptable, probability of drawing an erroneous conclusion).

The second question addresses the data user's potential future needs. For example, if investigators
decide to use a certain sampling design at a different location from where the design was first used, they
should determine how well the design can be expected to perform given that the outcomes and environmenta
conditions of this sampling event will be different from those of the original event. Because environmental
conditions will vary from one location or time to another, the adequacy of the sampling design approach
should be evaluated over abroad range of possible outcomes and conditions.

0.2 DQA AND THE DATA LIFE CYCLE

The datalife cycle (depicted in Figure 0.2-1) comprises three steps.  planning, implementation, and
assessment. During the planning phase, the Data Quality Objectives (DQO) Process (or some other
systematic planning procedure) is used to define quantitative and qualitative criteriafor determining when,
where, and how many samples (measurements) to collect and a desired level of confidence. Thisinformation,
along with the sampling methods, analytical procedures, and appropriate quality assurance (QA) and quality
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control (QC) procedures, are documented in the Quality Assurance Project Plan (QAPP). Dataarethen
collected following the QAPP specifications. DQA completes the data life cycle by providing the assessment
needed to determine if the planning objectives were achieved. During the assessment phase, the data are
validated and verified to ensure that the sampling and analysis protocols specified in the QAPP were
followed, and that the measurement systems performed in accordance with the criteria specified in the QAPP.
DQA then proceeds using the validated data set to determine if the quality of the datais satisfactory.

QUALITY ASSURANCE ASSESSMENT

PLANNING . QC/Performance
Routine Data Evaluation Dat
Data Quality Objectives Process valuation Data
Quality Assurance Project Plan Development + INPUTS +

DATA VALIDATIONNVERIFICATION

« Verify measurement performance

« Verify measurement procedures and
reporting requirements

IMPLEMENTATION + OUTPUT

Field Data Collection and Associated
Quality Assurance / Quality Control Activities

Z VALIDATED/VERIFIED DATA /

+ INPUT
DATA QUALITY ASSESSMENT
* Review DQOs and design
« Conduct preliminary data review
* Select statistical test
ASSESSM ENT « Verify assumptions
Data Validation/Verification * Draw conclusions
Data Quality Assessment
+ OUTPUT

ZCONCLUSIONS DRAWN FROM DATA /

Figure0.2-1. DQA in the Context of the Data Life Cycle

0.3 THE 5 STEPSOF THE DQA PROCESS

The DQA Process involves five steps that begin with areview of the planning documentation and
end with an answer to the question posed during the planning phase of the study. These steps roughly
parallel the actions of an environmenta statistician when analyzing aset of data. The five steps, which are
described in detail in the remaining chapters of this guidance, are briefly summarized as follows:

1 Review the Data Quality Objectives (DQOs) and Sampling Design: Review the DQO outputs to
assure that they are till applicable. If DQOs have not been developed, specify DQOs before
evaluating the data (e.g., for environmental decisions, define the statistical hypothesis and specify
tolerable limits on decision errors; for estimation problems, define an acceptable confidence or
probability interval width). Review the sampling design and data collection documentation for
consistency with the DQOs.

2. Conduct a Preliminary Data Review: Review QA reports, calculate basic statistics, and generate
graphs of the data. Use thisinformation to learn about the structure of the data and identify patterns,
relationships, or potential anomalies.
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3. Select the Statistical Test: Select the most appropriate procedure for summarizing and analyzing
the data, based on the review of the DQOs, the sampling design, and the preliminary datareview.
Identify the key underlying assumptions that must hold for the statistical proceduresto be valid.

4, Verify the Assumptions of the Statistical Test: Evaluate whether the underlying assumptions hold,
or whether departures are acceptable, given the actual data and other information about the study.

5. Draw Conclusions from the Data: Perform the calculations required for the statistical test and
document the inferences drawn as aresult of these calculations. If the designisto be used again,
evaluate the performance of the sampling design.

These five steps are presented in alinear sequence, but the DQA processis by its very natureiterative. For
example, if the preliminary datareview reveals patterns or anomaliesin the data set that are inconsistent with
the DQOs, then some aspects of the study planning may haveto be reconsidered in Step 1. Likewisg, if the
underlying assumptions of the statistical test are not supported by the data, then previous steps of the DQA
process may have to be revisited. The strength of the DQA processisthat it is designed to promote an
understanding of how well the data satisfy their intended use by progressing in alogical and efficient manner.

Nevertheless, it should be emphasized that the DQA process cannot  absol utely prove that one has or
has not achieved the DQOs set forth during the planning phase of astudy. This situation occurs because a
decision maker can never know the true value of theitem of interest. Data collection only providesthe
investigators with an estimate of this, not itstrue value. Further, because anaytical methods are not perfect,
they too can only provide an estimate of the true value of an environmental sample. Because investigators
make a decision based on estimated and not true values, they run the risk of making awrong decision
(decision error) about the item of interest.

04 INTENDED AUDIENCE

This guidance is written for a broad audience of potential data users, data analysts, and data
generators. Data users (such as project managers, risk assessors, or principal investigators who are
responsible for making decisions or producing estimates regarding environmental characteristics based on
environmental data) should find this guidance useful for understanding and directing the technical work of
others who produce and analyze data. Data analysts (such as quality assurance specialists, or any technical
professional who is responsible for evaluating the quality of environmental data) should find this guidance to
be a convenient compendium of basic assessment tools. Data generators (such as analytical chemists, field
sampling specialists, or technical support staff responsible for collecting and analyzing environmental
samples and reporting the resulting data values) should find this guidance useful for understanding how their
work will be used and for providing afoundation for improving the efficiency and effectiveness of the data
generation process.

05 ORGANIZATION
This guidance presents background information and statistical tools for performing DQA. Each
chapter corresponds to a step in the DQA Process and begins with an overview of the activitiesto be

performed for that step. Following the overviewsin Chapters 1, 2, 3, and 4, specific graphical or statistical
tools are described and step-by-step procedures are provided along with examples.
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0.6 SUPPLEMENTAL SOURCES

Many of the graphical and statistical tools presented in this guidance are also implemented in a user-
friendly, personal computer software program called DataQUEST (Data Quality Evaluation Statistical Tools,
EPA QA/G-9D). DataQUEST simplifies theimplementation of DQA by automating many of the
recommended statistical tools. DataQUEST runs on most | BM-compatible persona computers using the
DOS operating system; see the DataQUEST User's Guide for complete information on the minimum
computer requirements.

The main references in this document are important works having application to environmenta
sampling and interpretation of data; most of these references are widely available within the scientific and
environmental communities. The remaining references are either more detailed original academic articles or
are not asreadily available to analysts. Two excdlent Agency references for analyzing environmental data
are Guidance on the Satistical Analysis of Ground-Water Monitoring Data (EPA 1992a) , a useful
compendium of statistical methods and procedures (many of which are incorporated in this document) for the
analysis of data generated by EPA’s Office of Solid Waste; and Scout: A Data Analysis Program (EPA
1993b), a software program for analyzing multivariate data that includes methods for identifying multivariate
outliers, graphing the raw data, and displaying the results of principal component analysis.

0.7 SCOPE AND LIMITATIONS

This guidance isintended to be a convenient compendium of practical methods for the environmental
scientist and manager. 1t focuses on measurement data obtained through sampling and analysis of
contaminants in environmental media. Statistical nomenclature has been kept to the minimum and there are
some areas that will require the input of an environmental statistician for complete analysis. The intent of the
document isto assist the non-statistician in the review and analysis of environmenta data.

This document represents the first edition of the DQA guidance, which will be followed by annual
updates. Readers are encouraged to send their suggestions for improvements and additions to the U.S. EPA
Quality Assurance Division. (The addressisgiven in the Foreword.) The annual updates will refine existing
sections, present new tools and procedures, and expand the scope of application to additional types of
environmental problems.

Thisfirst edition isintended to cover most of the core topics of DQA for regulatory compliance
decisionsthat involve spatially distributed contamination. Most of the toolswill also be applicable to
sampling data from hazardous waste sites or facilities under Superfund or RCRA. Many of thetools are
generally applicable and useful for other types of problemsaswell. Future editions of this guidance will
address more thoroughly the problems and issues associated with analyzing sampling data from more
dynamic processes, such as effluent discharged to waterways and emissions dispersed in ambient air. Future
editions will also address other topics, such as analyzing results from designed experiments and other
research studies, as well as environmental enforcement investigations.

Thisguidanceisexplicitly not intended to cover certain topics that are important in some areas of
environmental protection. For example, it does not address the important area of survey sampling involving
the administration of interviews or questionnairesto people. This document is not intended to substitute for
more thorough treatments of fundamental statistical concepts (as found in standard textbooks), nor isit
intended to provide aforum for publishing original research (asfound in scholarly journals).
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CHAPTER 1

STEP 1: REVIEW DQOsAND THE SAMPLING DESIGN

THE DATA QUALITY ASSESSMENT PROCESS

Review DQOs and Sampling Design

Purpose
Conduct Preliminary Data Review

Verify the Assumptions

Activities

« Review Study Objectives

« Statements of hypotheses
« Sampling design concepts

‘ \ REVIEW DQOs AND SAMPLING DESIGN

Review the DQO outputs, the sampling design, and
‘ any data collection documentation for consistency. If
DQOs have not been developed, define the statistical
Select the Statistical Test hypothesis and specify tolerable limits on decision errors.

‘ « Translate Objectives into Statistical Hypothesis
« Develop Limits on Decision Errors
Draw Conclusions From the Data * Review Sampling Design
Tools

Step 1. Review DQOsand Sampling Design

Review the objectives of the study.

= |f DQOs have not been developed, review section 1.1.1 and define these objectives.

= |f DQOs were developed, review the outputs from the DQO Process.

Translate the data user's objectives into a statement of the primary statistical hypothesis.

= |f DQOs have not been developed, review sections 1.1.2 and 1.2, and Table 1.2-1,
then develop a statement of the hypothesis based on the data user's objectives.
= |f DQOs were developed, translate them into a statement of the primary hypothesis.

Translate the data user's objectives into limits on Type | or Type Il decision errors.

= |f DQOs have not been developed, review section 1.1.3 and document the data
user's tolerable limits on decision errors.

= |f DQOs were developed, confirm the limits on decision errors.

Review the sampling design and note any special features or potential problems.
= Review the sampling design for any deviations (sections 1.1.4 and 1.3).
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CHAPTER 1
STEP 1: REVIEW DQOsAND THE SAMPLING DESIGN

11 OVERVIEW AND ACTIVITIES

The DQA Process begins by reviewing the key outputs from the planning phase of the datalife cycle:
the Data Quality Objectives (DQOs), the Quality Assurance Project Plan (QAPP), and any associated
documents. The DQOs provide the context for understanding the purpose of the data collection effort and
establish the qualitative and quantitative criteriafor ng the quality of the data set for the intended use.
The sampling design (documented in the QAPP) providesimportant information about how to interpret the
data. By studying the sampling design, the analyst can gain an understanding of the assumptions under which
the design was developed, as well as the relationship between these assumptions and the DQOs. By
reviewing the methods by which the samples were collected, measured, and reported, the analyst prepares for
the preliminary data review and subsequent steps of the DQA Process.

Careful planning improves the representativeness and overall quality of a sampling design, the
effectiveness and efficiency with which the sampling and analysis plan is implemented, and the usefulness of
subsequent DQA efforts. Given the benefits of planning, the Agency has developed the DQO Process which
isalogical, systematic planning procedure based on the scientific method. The DQO Process emphasizesthe
planning and development of a sampling design to collect the right type, quality, and quantity of data needed
to support the decision. Using both the DQO Process and the DQA Process will help to ensure that the
decisions are supported by data of adequate quality; the DQO Processdoesso  prospectively and the DQA
Process does so retrospectively.

When DQOs have not been developed during the planning phase of the studly, it is necessary to
develop statements of the data user's objectives prior to conducting DQA. The primary purpose of stating the
data user's objectives prior to analyzing the data is to establish appropriate criteriafor evaluating the quality
of the data with respect to their intended use. Analystswho are not familiar with the DQO Process should
refer to the Guidance for the Data Quality Objectives Process, EPA QA/G-4 (1994), abook on statistical
decision making using tests of hypothesis, or consult a satistician.

The remainder of this chapter addresses recommended activities for performing this step of DQA and
technical considerations that support these activities. The remainder of this section describes the
recommended activities, the first three of which will differ depending on whether DQOs have already been
developed for the study. Section 1.2 describes how to select the null and alternative hypothesis and section
1.3 presents a brief overview of different types of sampling designs.

111 Review Study Objectives

In this activity, the objectives of the study are reviewed to provide context for analyzing the data. If a
planning process has been implemented before the data are collected, then this step reduces to reviewing the
documentation on the study objectives. If no planning process was used, the data user should:
= Develop aconcise definition of the problem (DQO Process Step 1) and the decision (DQO Process Step

2) for which the data were collected. This should provide the fundamental reason for collecting the
environmental data and identify all potentia actionsthat could result from the data analysis.

EPA QA/G-9 11-1 QA96



= |dentify if any essential information is missing (DQO Process Step 3). |If 0, either collect the missing
information before proceeding, or select a different approach to resolving the decision.

= Specify the scale of decision making (any subpopulations of interest) and any boundaries on the study
(DQO Process Step 4) based on the sampling design. The scale of decision making isthe smallest area
or time period to which the decision will apply. The sampling design and implementation may restrict
how small or how large this scale of decision making can be.

1.1.2 Trandate Objectivesinto Statistical Hypotheses

In this activity, the data user's objectives are used to develop a precise statement of the primary !
hypotheses to be tested using environmental data. A statement of the primary statistical hypothesesincludes
anull hypothesis, which isa*“basdline condition” that is presumed to be true in the absence of strong
evidence to the contrary, and an alternative hypothesis, which bears the burden of proof. In other words, the
basdline condition will be retained unless the alternative condition (the aternative hypothesis) isthought to be
true due to the preponderance of evidence. In general, such hypotheses consist of the following € ements:

= apopulation parameter of interest, which describes the feature of the environment that the data user is
investigating;

= anumerica value to which the parameter will be compared, such as aregulatory or risk-based threshold
or asimilar parameter from another place (e.g., comparison to areference site) or time (e.g., comparison
to aprior time); and

= therdation (such as“isequal to” or “is greater than”) that specifies precisaly how the parameter will be
compared to the numerical value.

If DQOs were developed, the statement of hypotheses already should be documented in the outputs of Step 6
of the DQO Process. If DQOs have not been developed, then the analyst should consult with the data user to
develop hypotheses that address the data user's concerns. Section 1.2 describesin detail how to develop the

statement of hypotheses and includes alist of common encountered hypotheses for environmental decisions. .

1.1.3 Develop Limitson Decision Errors

The goal of thisactivity isto develop numerical probability limitsthat expressthe data user's
tolerance for committing false positive (Type |) or false negative (Type I1) decision errors as aresult of
uncertainty inthe data. A false positive error occurs when the null hypothesisisrgiected when it istrue. A
false negative decision error occurs when the null hypothesisis not rejected when it isfalse. If tolerable
decision error rates were not established prior to data collection, then the data user should:

= Specify the gray region where the consequences of afase negative decision error are relatively minor
(DQO Process Step 6). The gray region is bounded on one side by the threshold value and on the other

! Throughout this document, the term “ primary hypotheses’ refers to the statistical hypotheses that correspond to the data user's
decision. Other statistical hypotheses can be formulated to formally test the assumptions that underlie the specific caculations used to
test the primary hypotheses. See Chapter 3 for examples of assumptions underlying primary hypotheses and Chapter 4 for examples
of how to test these underlying assumptions.
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side by that parameter value where the consequences of making a false negative decision error begin to be
significant. Establish this boundary by evaluating the consequences of not rejecting the null hypothesis
when it isfalse and then place the edge of the gray region where these consequences are severe enough to
set alimit on the magnitude of this false negative decision error. The gray region is the area between this
parameter value and the threshold value.

The width of the gray region represents one important aspect of the decision maker's concern for decision
errors. A more narrow gray region implies a desire to detect conclusively the condition when the true
parameter value is close to the threshold value (“close’ relative to the variability in the data). When the
true value of the parameter falls within the gray region, the decision maker may face a high probability of
making a fase negative decision error, because the data may not provide conclusive evidence for regjecting
the null hypothesis, even though it isfalse (i.e., the data may be too variable to alow the decision maker
to recognize that the basdline condition is, in fact, not true).

= Specify tolerable limits on the probahility of committing false positive and false negative decision errors
(DQO Process Step 6) that reflect the decision maker's tolerable limits for making an incorrect decision.
Select a possible vaue of the parameter; then, choose a probability limit based on an evaluation of the
seriousness of the potential consequences of making the decision error if the true parameter value is
located at that point. At aminimum, the decision maker should specify afalse positive decision error
limit at the threshold value ( «), and afalse negative decision error limit at the other edge of the gray

region ().

An example of the gray region and limits on the probability of committing both false positive and false
negative decision errors are contained in Box 1.1-1.

If DQOs were developed for the study, the tolerable limits on decision errors will already have been
developed. Thesevalues can be transferred directly as outputs for this activity. In this case, the action level
isthe threshold vaue; the false positive error rate at the action level isthe Typel error rateor  «; and the false
negative error rate at the other bound of the gray region isthe Typell error rateor  f.

114 Review Sampling Design

The goal of this activity isto familiarize the analyst with the main features of the sampling design
that was used to generate the environmental data. The overall type of sampling design and the manner in
which samples were collected or measurements were taken will place conditions and constraints on how the
datamust be used and interpreted. Section 1.3 provides additional information about severa different types
of sampling designs that are commonly used in environmental studies.

Review the sampling design documentation with the data user's objectivesin mind. Look for design
features that support or contradict those objectives. For example, if the data user isinterested in making a
decision about the mean level of contamination in an effluent stream over time, then composite samples may
be an appropriate sampling approach. On the other hand, if the data user is looking for hot spots of
contamination at a hazardous waste site, compositing should only be used with caution, to avoid “averaging
away” hot spots. Also, look for potential problemsin the implementation of the sampling design. For
example, verify that each point in space (or time) had an equal probability of being selected for asimple
random sampling design. Small deviations from a sampling plan may have minimal effect on the conclusions
drawn from the data set. Significant or substantial deviations should be flagged and their potentia effect
carefully considered throughout the entire DQA.
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Box 1.1-1: Example Applying the DQO Process Retrospectively

A waste incineration company was concerned that waste fly ash could contain hazardous levels of cadmium
and should be disposed of in a RCRA landfill. As a result, eight composite samples each consisting of eight
grab samples were taken from each load of waste. The TCLP leachate from these samples were then

analyzed using a method specified in 40 CFR, Pt. 261, App. Il. DQOs were not developed for this problem;
therefore, study objectives (sections 1.1.1 through 1.1.3) should be developed before the data are analyzed.

111 Review Study Objectives
= Develop a concise definition of the problem — The problem is defined above.
= |dentify if any essential information is missing — It does not appear than any essential information is missing.

= Specify the scale of decision making — Each waste load is sampled separately and decisions need to be
made for each load. Therefore, the scale of decision making is an individual load.

11.2 Translate Objectives into Statistical Hypotheses

Since composite samples were taken, the parameter of interest is the mean cadmium concentration. The
RCRA regulatory standard for cadmium in TCLP leachate is 1.0 mg/L. Therefore, the two hypotheses are
“mean cadmium > 1.0 mg/L" and “mean cadmium < 1.0 mg/L.”

There are two possible decision errors 1) to decide the waste is hazardous (“mean> 1.0") when it truly is

not (“mean < 1.0”), and 2) to decide the waste is not hazardous (“mean < 1.0”) when it truly is (“mean= 1.0").
The risk of deciding the fly ash is not hazardous when it truly is hazardous is more severe since potential
consequences of this decision error include risk to human health and the environment. Therefore, this error
will be labeled the false positive error and the other error will be the false negative error. As a result of this
decision, the null hypothesis will be that the waste is hazardous (“mean cadmium> 1.0 mg/L") and the
alternative hypothesis will be that the waste is not hazardous (“mean cadmium < 1.0 mg/L"). (See section 1.2
for more information on developing the null and alternative hypotheses.)

113 Develop Limits on Decision Errors
= Specify the gray region — The consequence of a false negative decision error near the action level is

unnecessary resource expenditure. The amount of data also influences the width of the gray region.
Therefore, for now, a gray region was set from .75 to 1.0 mg/L. This region could be revised depending on

the power of the hypothesis test. Decision Performance Goal Diagram
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12 DEVELOPING THE STATEMENT OF HYPOTHESES

The full statement of the statistical hypotheses has two major parts: the null hypothesis(H ) and the
aternative hypothesis (H ,). In both parts, a population parameter is compared to either afixed value (for a
one-sample test) or another population parameter (for atwo-sampletest). The population parameter isa
guantitative characteristic of the population that the data user wants to estimate using the data. In other
words, the parameter describes that feature of the population that the data user will evaluate when making the
decision. Examples of parameters are the popul ation mean and median.

If the data user isinterested in drawing inferences about only one population, then the null and
alternative hypotheses will be stated in terms that relate the true value of the parameter to some fixed
threshold value. A common example of this one-sample problem in environmental studies is when pollutant
levelsin an effluent stream are compared to aregulatory limit. If the data user isinterested in comparing two
populations, then the null and alternative hypotheses will be stated in terms that compare the true value of one
population parameter to the corresponding true parameter value of the other population. A common example
of thistwo-sample problem in environmental studies iswhen a potentially contaminated waste site is being
compared to areference area using samples collected from the respective areas. |n this situation, the
hypotheses often will be stated in terms of the difference between the two parameters.

The decision on what should constitute the null hypothesis and what should be the alternative is
sometimes difficult to ascertain. In many cases, this problem does not arise because the null and alternative
hypotheses are determined by specific regulation. However, when the null hypothesisis not specified by
regulation, it is necessary to make this determination. The test of hypothesis procedure prescribes that the
null hypothesisis only rejected in favor of the aternative, provided there is overwhelming evidence from the
data that the null hypothesisisfalse. In other words, the null hypothesisis considered to be true unless the
data show conclusively that thisisnot so. Therefore, it is sometimes useful to choose the null and alternative
hypothesesin light of the consequences of possibly making an incorrect decision between the null and
alternative hypotheses. The true condition that occurs with the more severe decision error (not what would be
decided in error based on the data) should be defined as the null hypothesis. For example, consider the two
decision errors. “decide a company does not comply with environmental regulations when it truly does’ and
“decide a company does comply with environmental regulations when it truly doesnot.” If thefirst decision
error is considered the more severe decision error, then the true condition of this error, “the company does
comply with the regulations’ should be defined as the null hypothesis. If the second decision error is
considered the more severe decision error, then the true condition of this error, “the company does not comply
with the regulations’ should be defined as the null hypothesis.

An alternative method for defining the null hypothesisis based on historical information. If alarge
amount of information exists suggesting that one hypothesisis extremely likely, then this hypothesis should
be defined as the alternative hypothesis. In this case, alarge amount of data may not be necessary to provide
overwhelming evidence that the other (null) hypothesisisfalse. For example, if the waste from an incinerator
was previously hazardous and the waste process has not changed, it may be more cost-effective to define the
alternative hypothesis as “the waste is hazardous’ and the null hypothesis as “the waste is not hazardous.”

Consider adata user who wants to know whether the true mean concentration (u) of atrazinein
ground water a a hazardous waste site is greater than afixed threshold value C. If the data user presumes
from prior information that the true mean concentration is at least C due possibly to some contamination
incident, then the data must provide compelling evidence to rgject that presumption, and the hypotheses can
be stated asfollows:
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Narrative Statement of Hypotheses Statement of Hypotheses Using Standard Notation

Null Hypothesis (Basdline Condition): Hy: 1> C;
The true mean concentration of atrazinein ground
water is greater than or equa to the threshold versus

value C; versus

Alternative Hypothesis. Hy u<C
The true mean concentration of atrazinein ground
water is less than the threshold value C.

On the other hand, if the data user presumes from prior information that the true mean concentration is less
than C due possibly to the fact that the ground water has not been contaminated in the past, then the data
must provide compelling evidence to reject that presumption, and the hypotheses can be stated as follows:

Narrative Statement of Hypotheses Statement of Hypotheses Using Standard Notation
Null Hypothesis (Basdline Condition): Hy: 1< C;

The true mean concentration of atrazinein ground

water isless than or equal to the threshold versus

value C; versus

Alternative Hypothesis. Hy u>C
The true mean concentration of atrazinein ground
water is greater than the threshold value C.

In stating the primary hypotheses, it is convenient to use standard statistical notation, as shown
throughout this document. However, the logic underlying the hypothesis aways corresponds to the decision
of interest to the data user.

Table 1.2-1 summarizes some common types of environmenta decisions and the corresponding
hypotheses. In Table 1.2-1, the parameter is denoted using the symbol “ ©,” and the difference between two
parametersis denoted using“ 0, - ®,” where 0, represents the parameter of the first populationand ©,
represents the parameter of the second population. Theuseof “ ©” isto avoid using the terms “ population
mean” or “population median” repeatedly because the structure of the hypothesis test remains the same
regardless of the population parameter. The fixed threshold value is denoted “C,” and the difference between
two parametersisdenoted “ §,” (it is common to see the null hypothesis defined such that  §,=0). If the data
user's problem does not fall into one of the categories described in Table 1.2-1, the problem and associated
hypotheses may be of a more complicated form and a statistician should be consulted.

For the first of the six decision problemsin Table 1.2-1, only estimatesof  © that exceed C can cast
doubt on the null hypothesis. Thisis called aone-tailed hypothesis test, because only parameter estimates on
one side of the threshold value can lead to rejection of the null hypothesis. The second, fourth, and fifth rows
of Table 1.2-1 are also examples of one-tailed hypothesistests. The third and sixth rows of Table 1.2-1 are
examples of two-tailed tests, because estimates falling both below and above the null-hypothesis parameter
value can lead to rejection of the null hypothesis. Maost hypotheses connected with environmental monitoring
are one-tailed because high pollutant levels can harm humans or ecosystems.
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Table 1.2-1. Commonly Used Statements of Statistical Hypotheses

Type of Decision

Null Hypothesis

Alternative
Hypothesis

Compare environmental conditionsto afixed
threshold value, such as aregulatory standard or
acceptablerisk level; presume that the true
condition isless than the threshold value.

Hy ©®<C

Hy ©>C

Compare environmental conditionsto afixed
threshold value; presume that the true condition is
greater than the threshold value.

Hy ©>C

Hy ®<C

Compare environmental conditionsto afixed
threshold value; presume that the true condition is
equd to the threshold value and the data user is
concerned whenever conditions vary significantly
from thisvalue.

Hy: ©=C

Hy © #C

Compare environmental conditions associated with
two different populations to a fixed threshold value
(8o) such asaregulatory standard or acceptable
risk level; presume that the true condition is less
than the threshold value. If it is presumed that
conditions associated with the two populations are
the same, the threshold valueis 0.

Ho: ®l-®2 < 60

(HO: ®l = @2 < 0)

HA: ®l-®2>60

(Ha: ©,-0,>0)

Compare environmental conditions associated with
two different populations to a fixed threshold value
(8o) such asaregulatory standard or acceptable
risk level; presume that the true condition is greater
than the threshold value. If it is presumed that
conditions associated with the two populations are
the same, the threshold valueis 0.

Ho: ®l-®22 60

(HO: ®l = @2 > 0)

HA: ®l-®2<60

(Ha: ©,-0,<0)

Compare environmental conditions associated with
two different populations to a fixed threshold value
(8o) such asaregulatory standard or acceptable
risk level; presume that the true condition is equal
to the threshold value. If it is presumed that
conditions associated with the two populations are
the same, the threshold valueis 0.

Ho: ®l-®2:60

(Ho: ©,-0,=0)

HA: ®l-®2 7+ 60

(Ha: ©,-0, = 0)
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13 DESIGNSFOR SAMPLING ENVIRONMENTAL MEDIA

Sampling designs provide the basis for how a set of samples may be analyzed. Different sampling
designs require different analysis techniques and different assessment procedures. There are two primary
types of sampling designs. authoritative (judgment) sampling and probability sampling. This section
describes some of the most common sampling designs.

1.3.1 Authoritative Sampling

With authoritative (judgment) sampling, an expert having knowledge of the site (or process)
designates where and when samples are to be taken. Thistype of sampling should only be considered when
the objectives of the investigation are not of a statistical nature, for example, when the objective of astudy is
to identify specific locations of leaks, or when the study is focused solely on the sampling locations
themsdlves. Generally, conclusions drawn from authoritative samples apply only to the individual samples
and aggregation may result in severe bias and lead to highly erroneous conclusions. Judgmental sampling
also precludes the use of the sample for any purpose other than the original one. Thusif the datamay be used
in further studies (e.g., for an estimate of variability in alater study), a probabilistic design should be used.

When the study objectives involve estimation or decision making, some form of probability sampling
isrequired. Asdescribed below, this does not preclude use of the expert's knowledge of the site or processin
designing a probahility-based sampling plan; however, valid statistical inferences require that the plan
incorporate some form of randomization in choosing the sampling locations or sampling times. For example,
to determine maximum SO , emission from a boiler, the sampling plan would reasonably focus, or put most of
the weight on, periods of maximum or near-maximum boiler operation. Similarly, if aresidential lot isbeing
evaluated for contamination, then the sampling plan can take into consideration prior knowledge of
contaminated areas, by weighting such areas more heavily in the sample sdection and data analysis.

1.3.2 Probability Sampling

Probability samples are samples in which every member of the target population (i.e., every potentia
sampling unit) has a known probability of being included in the sample. Probability samples can be of
various types, but in some way, they al make use of randomization, which alows valid probability
statements to be made about the quality of estimates or hypothesistests that are derived from the resultant
data.

One common misconception of probability sampling procedures is that these procedures preclude
the use of important prior information. Indeed, just the oppositeistrue. An efficient sampling designisone
that uses al available prior information to stratify the region and set appropriate probabilities of selection.
Another common misconception isthat using a probability sampling design means alowing the possibility
that the sample points will not be distributed appropriately across the region. However, if thereisno prior
information regarding the areas most likely to be contaminated, a grid sampling scheme (atype of stratified
design) isusually recommended to ensure that the sampling points are dispersed across the region.

1.3.2.1 Simple Random Sampling
The simplest type of probability sample isthe ssimple random sample where every possible sampling
unit in the target population has an equal chance of being selected. Simple random samples, like the other

samples, can be either samplesin time and/or space and are often appropriate at an early stage of an
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investigation in which little is known about systematic variation within the site or process. All of the
sampling units should have equa volume or mass, and ideally be of the same shape if applicable. Witha
simple random sample, the term “random™ should not be interpreted to mean haphazard; rather, it has the
explicit meaning of equiprobable seection. Simple random samples are generally developed through use of a
random number table or through computer generation of pseudo-random numbers.

1.3.2.2 Sequential Random Sampling

Usually, simple random samples have afixed sample size, but some dternative approaches are
available, such as sequential random sampling, where the sample sizesare not fixed a priori. Rather, a
statistical test is performed after each specimen’'s analysis (or after some minimum number have been
analyzed). Thisgtrategy could be applicable when sampling and/or analysisis quite expensive, when
information concerning sampling and/or measurement variability islacking, when the characteritics of
interest are stable over the time frame of the sampling effort, or when the objective of the sampling effort is
to test a single specific hypothesis.

1.3.2.3 Systematic Samples

In the case of spatial sampling, systematic sampling involves establishing atwo-dimensiona (or in
some cases a three-dimensional) spatial grid and selecting arandom starting location within one of the cells.
Sampling pointsin the other cells are located in a deterministic way relative to that starting point. In addition,
the orientation of the grid is sometimes chosen randomly and various types of systematic samples are
possible. For example, points may be arranged in a pattern of squares (rectangular grid sampling) or a
pattern of equilateral triangles (triangular grid sampling). The result of either approach is asimple pattern of
equally spaced points at which sampling isto be performed.

Systematic sampling designs have several advantages over random sampling and some of the other
types of probability sampling. They are generaly easier to implement, for example. They are also preferred
when one of the objectivesisto locate “ hot spots’ within asite or otherwise map the pattern of
concentrations over asite. On the other hand, they should be used with caution whenever thereisa
possibility of sometype of cyclical pattern in the waste site or process. Such a situation, combined with the
uniform pattern of sampling points, could very readily lead to biased resullts.

1.3.2.4 Stratified Samples

Another type of probability sample is the stratified random sample, in which the site or processis
divided into two or more nonoverlapping strata, sampling units are defined for each stratum, and separate
simple random samples are employed to select the unitsin each stratum. (If a systematic sample were
employed within each stratum, then the design would be referred to as a stratified systematic sample)) Strata
should be defined so that physical samples within a stratum are more similar to each other than to samples
from other strata. If so, a stratified random sample should result in more precise estimates of the overall
population parameter than those that would be obtained from a simple random sample with the same number
of sampling units.

Stratification is an accepted way to incorporate prior knowledge and professional judgment into a
probabilistic sampling design. Generally, unitsthat are “alike’ or anticipated to be “alike” are placed
together in the same stratum. Unitsthat are contiguous in space (e.g., similar depths) or time are often
grouped together into the same stratum, but characteristics other than spatial or temporal proximity can also
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be employed. Media, terrain characteristics, concentration levels, previous cleanup attempts, and
confounding contaminants can also be used as the basis for creating strata.

Advantages of dratified samples over random samples include their ability to ensure more uniform
coverage of the entire target population and, as noted above, their potential for achieving greater precisionin
certain estimation problems. Even when imperfect information is used to form strata, the stratified random
sample will generally be more cost-effective than a simple random sample. A stratified design can also be
useful when thereisinterest in estimating or testing characteristics for subsets of the target population.
Because different sampling rates can be used in different strata, one can oversample in strata containing those
subareas of particular interest to ensure that they are represented in the sample. In general, statistical
calculations for data generated via stratified samples are more complex than for random samples, and certain
types of tests, for example, cannot be performed when stratified sasmples are employed. Therefore, a
statistician should be consulted when stratified sampling is used.

1.3.25 Compositing Physical Samples

When analysis costs are large relative to sampling costs, cost-effective plans can sometimes be
achieved by compositing physical samples or specimens prior to analysis, assuming that there are no safety
hazards or potential biases (for example, the loss of volatile organic compounds from a matrix) associated
with such compoasiting. For the same total cost, compositing in this situation would allow alarger number of
sampling units to be selected than would be the case if compositing were not used. Composite samples
reflect aphysical rather than a mathematical mechanism for averaging. Therefore, compositing should
generaly be avoided if population parameters other than amean are of interest (e.g., percentiles or standard
deviations).

Composite sampling is aso useful when the analyses of composited samples areto beused ina
two-staged approach in which the composite-sample analyses are used solely as a screening mechanism to
identify if additional, separate analyses need to be performed. This situation might occur during an early
stage of astudy that seeks to locate those areas that deserve increased attention due to potentialy high levels
of one or more contaminants.

1.3.2.6 Other Sampling Designs

Adaptive sampling involves taking a sample and using the resulting information to design the next
stage of sampling. The process may continue through several additional rounds of sampling and analysis. A
common application of adaptive sampling to environmental problems involves subdividing the region of
interest into smaller units, taking a probability sample of these units, then sampling al unitsthat border on
any unit with a concentration level greater than some specified level C. This processis continued until all
newly sampled unitsare below C. Thefield of adaptive sampling is currently undergoing active devel opment
and can be expected to have asignificant impact on environmental sampling.

Ranked sat sampling (RSS) uses the availability of an inexpensive surrogate measurement whenit is
correlated with the more expensive measurement of interest. The method exploits this correlation to obtain a
sample which is more representative of the population that would be obtained by random sampling, thereby
leading to more precise estimates of popul ation parameters than what would be obtained by random
sampling. RSS consists of creating n groups, each of size n (for atota of n 2 initial samples), then ranking the
surrogate from largest to smallest within each group. One sample from each group is then selected according
to a specified procedure and these n samples are analyzed for the more expensive measurement of interest.
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CHAPTER 2

STEP 2: CONDUCT A PRELIMINARY DATA REVIEW

THE DATA QUALITY ASSESSMENT PROCESS

Review DQOs and Sampling Design

‘ / CONDUCT PRELIMINARY DATA REVIEW

Purpose

Conduct Preliminary Data Review

Generate statistical quantities and graphical
representations that describe the data. Use this
information to learn about the structure of the data

Select the Statistical Test and identify any patterns or relationships.

‘ Activities

Verify the Assumptions

- Review Quality Assurance Reports
‘ « Calculate Basic Statistical Quantities
« Graph the Data

Draw Conclusions From the Data

Tools

« Statistical quantities
« Graphical representations

Step 2: Conduct a Preliminary Data Review

® Review quality assurance reports.
= Look for problems or anomalies in the implementation of the sample collection and
analysis procedures.
= Examine QC data for information to verify assumptions underlying the Data Quality
Objectives, the Sampling and Analysis Plan, and the Quality Assurance Project Plans.

® Calculate the statistical quantities.
= Consider calculating appropriate percentiles (section 2.2.1)
= Select measures of central tendency (section 2.2.2) and dispersion (section 2.2.3).
= [f the data involve two variables, calculate the correlation coefficient (section 2.2.4).

® Display the data using graphical representations.
= Select graphical representations (section 2.4) that illuminate the structure of the data set
and highlight assumptions underlying the Data Quality Objectives, the Sampling and
Analysis Plan, and the Quality Assurance Project Plans.
= Use a variety of graphical representations that examine different features of the set.
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STEP 2: CONDUCT A PRELIMINARY DATA REVIEW

Statistical Quantities Section | Directions | Example
Coefficient of Variation 223 Box2.2-4 | Box2.2-5
Correlation Coefficient 224 Box 2.2-6 | Box22-6
Interquartile Range 223 Box 2.2-4 | Box 225
Mean 222 Box 2.2-2 Box 2.2-3
Median 222 Box2.2-2 | Box2.2-3
Mode 222 Box2.2-2 | Box 2.2-3
Percentiles/Quantiles 221 Box22-1 | Box22-1
Range 2.2.3 Box 2.2-4 Box 2.2-5
Standard Deviation 223 Box 2.2-4 | Box2.2-5
Variance 223 Box 2.2-4 | Box 2.2-5
Graphical Representations Section Figure Directions Example
Box and Whisker Plot 233 Figure2.3-3 | Box 2.3-5 Box 2.3-6
Coded Scatter Plot. 2.3.7.3 | Figure2.3-9
Contour Plots 2393
Autocorrelation Function 2.3.8.2 | Figure2.3-13 | Box 2.3-16 Box 2.3-17
Empirica Quantile-Quantile Plot 2374 | Box23-14 Box 2.3-14 Box 2.3-14
Frequency Plots 231 Figure2.3-1 | Box 2.3-1 Box 2.3-2
h-Scatterplot 2393
Histogram 231 Figure2.3-2 | Box 2.3-1 Box 2.3-2
Norma Probability Plot 236 Box 2.3-12 Box 2.3-11 Box 2.3-12
Parallel Coordinate Plot 2.3.7.3 | Figure 2.3-10
Posting Plots 239.1 | Figure2.3-14 | Box 2.3-18 Box 2.3-18
Quantile Plot 235 Figure2.3-5 | Box 2.3-9 Box 2.3-10
Ranked Data Plot 234 Figure2.3-4 | Box 2.3-7 Box 2.3-8
Scatter Plot 23.7.2 | Figure2.3-8 | Box 2.3-13 Box 2.3-13
Scatter Plot Matrix 2.3.7.3 | Figure2.3-11
Stem-and-leaf Plot 232 Box 2.3-4 Box 2.3-3 Box 2.3-4
Symbol Plots 2.3.9.2 | Figure2.3-15 | Box 2.3-18 Box 2.3-18
Time Plot 2381 | Figure2.3-12 | Box 2.3-15 Box 2.3-15
EPA QA/G-9
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CHAPTER 2
STEP 2: CONDUCT A PRELIMINARY DATA REVIEW

21 OVERVIEW AND ACTIVITIES

In this step of the DQA Process, the analyst conducts a preliminary evaluation of the data set,
calculates some basic statistical quantities, and examines the data using graphical representations. A
preliminary data review should be performed whenever data are used, regardless of whether they are used to
support a decision, estimate a population parameter, or answer exploratory research questions. By reviewing
the data both numerically and graphically, one can learn the “structure” of the data and thereby identify
appropriate approaches and limitations for using the data. The DQA software DataQUEST (G-9D, 1996)

will perform all of these functions as well as more sophisticated statistical tests.

There are two main elements of preliminary datareview: (1) basic statistical quantities (summary
statistics); and (2) graphical representations of the data. Statistical quantities are functions of the data that
numerically describe the data set. Examples include a mean, median, percentile, range, and standard
deviation. They can be used to provide a mental picture of the data and are useful for making inferences
concerning the population from which the data were drawn. Graphical representations are used to identify
patterns and relationships within the data, confirm or disprove hypotheses, and identify potential problems.
For example, a normal probability plot may allow an analyst to quickly discard an assumption of normality
and may identify potential outliers.

The preliminary datareview step is designed to make the analyst familiar with the data. The review
should identify anomalies that could indicate unexpected events that may influence the analysis of the data.
The analyst may know what to look for based on the anticipated use of the data documented in the Data
Quality Objectives Process, the Quality Assurance Project Plan, and any associated documents. The results
of the review are then used to select a procedure for testing a statistical hypotheses to support the data user's
decision.

2.1.1 Review Quality Assurance Reports

Thefirst activity in conducting a preliminary data review isto review any relevant quality assurance
(QA) reports that describe the data collection and reporting process as it actually was implemented. These
QA reports provide valuable information about potential problems or anomalies in the data set. Specific
items that may be helpful include:

e Datavalidation reports that document the sample collection, handling, analysis, data reduction, and
reporting procedures used,;

e Quality control reports from laboratories or field stations that document measurement system
performance, including data from check samples, split samples, spiked samples, or any other internal
QC measures; and

® Technical systems reviews, performance evaluation audits, and audits of data quality, including data
from performance evaluation samples.
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When reviewing QA reports, particular attention should be paid to information that can be used to
check assumptions made in the Data Quality Objectives Process. Of great importance are apparent anomalies
in recorded data, missing values, deviations from standard operating procedures, and the use of nonstandard
data collection methodol ogies.

2.1.2 Calculate Basic Statistical Quantities

The goal of this activity isto summarize some basic quantitative characteristics of the data set using
common statistical quantities. Some statistical quantities that are useful to the analyst include: number of
observations; measures of central tendency, such as a mean, median, or mode; measures of dispersion, such
as range, variance, standard deviation, coefficient of variation, or interquartile range; measures of relative
standing, such as percentiles; measures of distribution symmetry or shape; and measures of association
between two or more variables, such as correlation. These measures can then be used for description,
communication, and to test hypothesis regarding the population from which the data were drawn. Section 2.2
provides detailed descriptions and examples of these statistical quantities.

The sample design may influence how the statistical quantities are computed. The formulas given in
this chapter are for simple random sampling, simple random sampling with composite samples, and
randomized systematic sampling. If amore complex design is used, such as a stratified design, then the
formulas may need to be adjusted.

2.1.3 GraphtheData

The goal of this step isto identify patterns and trends in the data that might go unnoticed using
purely numerical methods. Graphs can be used to identify these patterns and trends, to quickly confirm or
disprove hypotheses, to discover new phenomena, to identify potential problems, and to suggest corrective
measures. |n addition, some graphical representations can be used to record and store data compactly or to
convey information to others. Graphical representations include displays of individual data points, statistical
guantities, temporal data, spatial data, and two or more variables. Since no single graphical representation
will provide a complete picture of the data set, the analyst should choose different graphical techniquesto
illuminate different features of the data. Section 2.3 provides descriptions and examples of common
graphical representations.

At aminimum, the analyst should choose a graphical representation of the individual data points and
agraphical representation of the statistical quantities. If the data set has a spatial or temporal component,
select graphical representations specific to temporal or spatial datain addition to those that do not. If the data
set consists of more than one variable, treat each variable individually before devel oping graphical
representations for the multiple variables. |f the sampling plan or suggested analysis methods rely on any
critical assumptions, consider whether a particular type of graph might shed light on the validity of that
assumption. For example, if a small-sample study is strongly dependent on the assumption of normality, then
anormal probability plot would be useful (section 2.3.6).

The sampling design may influence what data may be included in each representation. Usually, the
graphical representations should be applied to each complete unit of randomization separately or each unit of
randomization should be represented with a different symbol. For example, the analyst could generate box
plots for each stratum instead of generating one box plot that includes the data from all the strata.
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2.2 STATISTICAL QUANTITIES
221 Measuresof Relative Standing

Sometimes the analyst is interested in knowing the relative position of one of several observationsin
relation to al of the observations. Percentiles are one such measure of relative standing that may also be
useful for summarizing data. A percentile is the data value that is greater than or equal to a given percentage
of the datavalues. Stated in mathematical terms, the p ™ percentile is the data value that is greater than or
equal to p% of the data values and is less than or equal to (1-p)% of the datavalues. Therefore, if X' isthep ™
percentile, then p% of the valuesin the data set are less than or equd to x, and (100-p)% of the values are
greater than or equal to X. A sample percentile may fall between a pair of observations. For example, the
75" percentile of a data set of 10 observationsis not uniquely defined. Therefore, there are several methods
for computing sample percentiles, the most common of which is described in Box 2.2-1.

Important percentiles usually reviewed are the quartiles of the data, the 25 ™, 50", and 75™
percentiles. The 50™ percentile is aso called the sample median (section 2.2.2), and the 25 ™ and 75"
percentile are used to estimate the dispersion of a data set (section 2.2.3). Also important for environmental
data are the 90™, 95™, and 99™ percentile where a decision maker would like to be sure that 90%, 95%, or
99% of the contamination levels are below afixed risk level.

Box 2.2-1: Directions for Calculating the Measure of Relative Standing (Percentiles)
with an Example

Let X,, X,, ..., X, represent the n data points. To compute the g" percentile, y(p), first list the data from
smallest to largest and label these points X, X5, - - -, X, (S0 that X, is the smallest, X, is the second
smallest, and X, is the largest). Lett = p/100, and multiply the sample size n by t. Divide the result into the
integer part and the fractional part, i.e., let nt = j + g where j is the integer part and g is the fraction part. Then
the p™ percentile, y(p), is calculated by:

Ifg=0, y(P) = (X)) *+ X+ 1)12
otherwise, Y(P) = Xj+1)

Example: The 90" and 95" percentile will be computed for the following 10 data points (ordered from smallest
to largest) : 4,4,4,5,5,6, 7,7, 8, and 10 ppb.

For the 95th percentile, t = p/100 = 95/100= .95 and nt = (10)(.95) = 9.5 =9 + .5. Therefore, j = 9 and
g=.5. Because g =.57 0, y(95) = X, 1) = X941y = X(10) = 10 ppm. Therefore, 10 ppm is the 95" percentile
of the above data.

For the 90" percentile, t = p/100 = 90/100 = .9 and nt = (10)(.9) = 9. Therefore j=9 and g =0. Since g = 0,
¥(90) = X9y + X(10)) / 2= (8 + 10) / 2 = 9 ppm.

A quantileis similar in concept to a percentile; however, a percentile represents a percentage whereas
aquantile represents a fraction. If 'x'isthe p ™ percentile, then at least p% of the values in the data set lie at or
below x, and at least (100-p)% of the values lie at or above x, whereas if X is the p/100 quantile of the data,
then the fraction p/100 of the data values lie at or below x and the fraction (1-p)/100 of the data valueslie at
or above x. For example, the .95 quantile has the property that .95 of the observationslie at or below x and
.05 of the datalie at or above x. For the examplein Box 2.2-1, 9 ppm would be the .95 quantile and 10 ppm

would be the .99 quantile of the data.
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2.2.2 Measuresof Central Tendency

Measures of central tendency characterize the center of a sample of data points. The three most
common estimates are the mean, median, and the mode. Directions for calculating these quantities are
contained in Box 2.2-2; examples are provided in Box 2.2-3.

The most commonly used measure of the center of a sample isthe sample mean, denotedby  X. This
estimate of the center of a sample can be thought of as the “ center of gravity” of the sample. The sample
mean is an arithmetic average for smple sampling designs; however, for complex sampling designs, such as
diratification, the sample mean is aweighted arithmetic average. The sample mean isinfluenced by extreme
values (large or small) and nondetects (see section 4.7).

The sample median (X) is the second most popular measure of the center of thedata. Thisvaluefalls
directly in the middle of the data when the measurements are ranked in order from smallest to largest. This
means that %2 of the data are smaller than the sample median and % of the data are larger than the sample
median. The median is another name for the 50 ™ percentile (section 2.2.1). The median is not influenced by
extreme values and can easily be used in the case of censored data (nondetects).

The third method of measuring the center of the data is the mode. The sample mode is the value of
the sample that occurs with the grestest frequency. Since this value may not aways exigt, or if it doesit may
not be unique, this valueis the least commonly used. However, the mode is useful for quditative data.

223 Measuresof Dispersion

Measures of central tendency are more meaningful if accompanied by information on how the data
spread out from the center. Measures of dispersion in a data set include the range, variance, sample standard
deviation, coefficient of variation, and the interquartile range. Directions for computing these measures are
given in Box 2.2-4; examples are given in Box 2.2-5.

The easiest measure of dispersion to compute is the samplerange. For smal samples, therangeis
easy to interpret and may adequately represent the dispersion of the data. For large samples, the range is not
very informative because it only considers (and therefore is greatly influenced) by extreme values.

The sample variance measures the dispersion from the mean of adata set. A large sample variance
implies that there is alarge spread among the data so that the data are not clustered around the mean. A small
sample variance implies that there is little spread among the data so that most of the data are near the mean.

The sample variance is affected by extreme values and by alarge number of nondetects. The sample standard
deviation is the square root of the sample variance and has the same unit of measure as the data.

The coefficient of variation (CV) is a unitless measure that allows the comparison of dispersion
across severa setsof data. The CV is often used in environmental applications because variability
(expressed as a standard deviation) is often proportional to the mean.

When extreme values are present, the interquartile range may be more representative of the

dispersion of the data than the standard deviation. This statistical quantity does not depend on extreme
values and is therefore useful when the data include a large number of nondetects.
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Box 2.2-2: Directions for Calculating the Measures of Central Tendency
Let X;, X,, ..., X, represent the n data points.

Sample Mean: The sample mean X is the sum of all the data points divided by the total number of data points
(n):

X = X,

Sl

n
i=1
Sample Median: The sample median ()Z) is the center of the data when the measurements are ranked in
order from smallest to largest. To compute the sample median, list the data from smallest to largest and label
these points X 1y, X,y - - -» X(ny (SO that X, , is the smallest, X ,, is the second smallest, and X, is the
largest).

If the number of data points is odd, then X = X([n+l],2)

~ X + X
If the number of data points is even, then X = (n/2) 5 ([v2]+1)

Sample Mode: The mode is the value of the sample that occurs with the greatest frequency. The mode may
not exist, or if it does, it may not be unique. To find the mode, count the number of times each value occurs.
The sample mode is the value that occurs most frequently.

Box 2.2-3: Example Calculations of the Measures of Central Tendency

Using the directions in Box 2.2-2 and the following 10 data points (in ppm): 4,5, 6, 7, 4, 10, 4, 5, 7, and 8,
the following is an example of computing the sample mean, median, and mode.

Sample mean:
)Z:4+5+6+7+4+10+4+5+7+8:@:6ppm
10 10

Therefore, the sample mean is 6 ppm.

Sample median: The ordered data are: 4, 4,4,5,5,6,7,7,8,and 10. Since n=10 is even, the sample
median is

% - X1012) +2X([10/z]+1) _ Xs) ; X6 _5 ; 6 _ 5.5 ppm

Thus, the sample median is 5.5 ppm.

Sample mode: Computing the number of times each value occurs yields:

4 appears 3 times; 5 appears 2 times; 6 appears 1 time; 7 appears 2 times; 8 appears 1 time; and 10
appears 1 time.

Because the value of 4 ppm appears the most times, it is the mode of this data set.
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Box 2.2-4: Directions for Calculating the Measures of Dispersion
Let X;, X,, ..., X, represent the n data points.

Sample Range: The sample range (R) is the difference between the largest value and the smallest value of
the sample, i.e., R = maximum - minimum.

Sample Variance: To compute the sample variance (s9), compute:

X2 - l(znjxi)z
ni-1

n-1

n
SZ _ =1

Sample Standard Deviation: The sample standard deviation (s) is the square root of the sample variance, i.e.,

s=ys

Coefficient of Variation: The coefficient of variation (CV) is the standard deviation divided by the sample mean
(section 2.2.2), i.e., CV = s/X. The CV is often expressed as a percentage.

Interquartile Range: Use the directions in section 2.2.1 to compute the 25" and 75" percentiles of the data
(y(25) and y(75) respectively). The interquartile range (IQR) is the difference between these values, i.e.,

IQR =y(75) - y(25).

Box 2.2-5: Example Calculations of the Measures of Dispersion

In this box, the directions in Box 2.2-4 and the following 10 data points (in ppm): 4, 5, 6, 7, 4, 10, 4, 5, 7, and
8, are used to calculate the measures of dispersion. From Box 2.2-2,X = 6 ppm.

Sample Range: R = maximum - minimum =10 - 4 = 6 ppm

Sample Variance:

2

[42+52+...+72+82] _ (4+5+10+7+8) - 0

s?2 = = = 4 ppm?
10 -1 9 PP

Sample Standard Deviation: S = \/? = ﬁ = 2 ppm

Coefficient of Variation: CV = s/ )Z = 2ppm/ 6ppm = 1 = 33%
3

Interguartile Range: Using the directions in section 2.2.1 to compute the 25" and 75" percentiles of the data
(y(25) and y(75) respectively): y(25) = X,.1)= X(3y=4 ppm and y(75) = X 7.1, = Xgy=7 ppm. The
interquartile range (IQR) is the difference between these values: IQR =y(75) - y(25) =7 - 4 = 3 ppm
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2.24 Measuresof Association

Data often include measurements of several characteristics (variables) for each sample point and
there may be interest in knowing the relationship or level of association between two or more of these
variables. One of the most common measures of association is the correlation coefficient. Directions and an
example for calculating a correlation coefficient are contained in Box 2.2-6.

The correlation coefficient measures the linear relationship between two variables. A linear
association implies that as one variable increases so does the other linearly, or as one variable decreases the
other increases linearly. Values of the correlation coefficient close to +1 (positive correlation) imply that as
one variable increases so does the other, the reverse holds for values closeto -1. A value of +1 impliesa
perfect positive linear correlation, i.e., all the data pairs lie on a straight line with a positive slope. A value of
-1 implies perfect negative linear correlation. Values close to 0 imply little correlation between the variables.

The correlation coefficient does not imply cause and effect. The analyst may say that the correlation
between two variables is high and the relationship is strong, but may not say that one variable causes the
other variable to increase or decrease without further evidence and strong statistical controls. The correlation
coefficient does not detect nonlinear relationships so it should be used only in conjunction with a scatter plot
(section 2.3.7.2). A scatter plot can be used to determine if the correlation coefficient is meaningful or if
some measure of nonlinear relationships should be used. The correlation coefficient can be significantly
changed by extreme values so a scatter plot should be used first to identify such values.

Box 2.2-6: Directions for Calculating the Correlation Coefficient with an Example

Let X;, X,, ..., X, represent one variable of the n data points and let Y, Y,, ..., Y, represent a second variable of
the n data points. The Pearson correlation coefficient, r, between X and Y is computed by:

XYY,
Z XY, - =

i=
i=1 n

G 35 S N 929
DX - =] [V - =]

i=1 i=1 n

Example: Consider the following data set (in ppb): Sample 1 — arsenic (X) = 4.0, lead (Y) = 8.0; Sample 2 -
arsenic = 3.0, lead = 7.0; Sample 3 - arsenic = 2.0, lead = 7.0; and Sample 4 - arsenic = 1.0, lead = 6.0.

n n n n n
Y X=10, Y ¥=28, } X7%=30, Y Y¥?=198, Y XY, = (4x8) +...+ (1x6) =
i-1 i-1 i- i- i-1

5 (10)(28)
4

and I = = 0.949

(20 - (102(10)1 198 - (282(28)1 vz

Since ris close to 1, there is a strong linear relationship between these two contaminants.
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2.3 GRAPHICAL REPRESENTATIONS
231 Histogram/Frequency Plots

Two of the oldest methods for summarizing data distributions are the frequency plot (Figure 2.3-1)
and the histogram (Figure 2.3-2). Both the histogram and the frequency plot use the same basic principlesto
display the data: dividing the data range into units, counting the number of points within the units, and
displaying the data as the height or area within a bar graph. There are slight differences between the
histogram and the frequency plot. In the frequency plot, the relative height of the bars represents the relative
density of the data. In a histogram, the area within the bar represents the relative density of the data. The
difference between the two plots becomes more distinct when unequal box sizes are used.

oo
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Number of Observations

Percentage of Observations (per ppm
N
T

Lo ]
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0 5 10 15 20 25 30 35 40

o
o
al

Concentration (ppm) Concentration (ppm)
Figure 2.3-1. Example of a Frequency Plot Figure 2.3-2. Example of a Histogram

The histogram and frequency plot provide a means of assessing the symmetry and variability of the
data. If the data are symmetric, then the structure of these plots will be symmetric around a central point such
asamean. The histogram and frequency plots will generally indicate if the data are skewed and the direction
of the skewness.

Directions for generating a histogram and a frequency plot are contained in Box 2.3-1 and an
exampleis contained in Box 2.3-2. When plotting a histogram for a continuous variable (e.g., concentration),
it is necessary to decide on an endpoint convention; that is, what to do with cases that fall on the boundary of
abox. With discrete variables, (e.g., family size) the intervals can be centered in between the variables. For
the family size data, the intervals can span between 1.5 and 2.5, 2.5 and 3.5, and so on, so that the whole
numbers that relate to the family size can be centered within the box. The visual impression conveyed by a
histogram or a frequency plot can be quite sensitive to the choice of interval width. The choice of the number
of intervals determines whether the histogram shows more detail for small sections of the data or whether the
datawill be displayed more simply as a smooth overview of the distribution.
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Box 2.3-1: Directions for Generating a Histogram and a Frequency Plot
Let X;, X,, ..., X, represent the n data points. To develop a histogram or a frequency plot:

STEP 1: Select intervals that cover the range of observations. If possible, these intervals should have equal
widths. A rule of thumb is to have between 7 to 11 intervals. If necessary, specify an endpoint
convention, i.e., what to do with cases that fall on interval endpoints.

STEP 2: Compute the number of observations within each interval. For a frequency plot with equal interval
sizes, the number of observations represents the height of the boxes on the frequency plot.

STEP 3: Determine the horizontal axis based on the range of the data. The vertical axis for a frequency plot
is the number of observations. The vertical axis of the histogram is based on percentages.

STEP 4: For a histogram, compute the percentage of observations within each interval by dividing the
number of observations within each interval (Step 3) by the total number of observations.

STEP 5: For a histogram, select a common unit that corresponds to the x-axis. Compute the number of
common units in each interval and divide the percentage of observations within each interval (Step
4) by this number. This step is only necessary when the intervals (Step 1) are not of equal widths.

STEP 6: Using boxes, plot the intervals against the results of Step 5 for a histogram or the intervals against
the number of observations in an interval (Step 2) for a frequency plot.

Box 2.3-2: Example of Generating a Histogram and a Frequency Plot

Consider the following 22 samples of a contaminant concentration (in ppm): 17.7, 17.4, 22.8, 35.5, 28.6,
17.219.1,<4,7.2,<4,15.2,14.7,14.9,10.9, 12.4,12.4, 11.6, 14.7, 10.2, 5.2, 16.5, and 8.9.

STEP 1: This data spans 0 - 40 ppm. Equally sized intervals of 5 ppm will be used: 0 - 5 ppm; 5 - 10 ppm;
etc. The endpoint convention will be that values are placed in the highest interval containing the
value. For example, a value of 5 ppm will be placed in the interval 5 - 10 ppm instead of O - 5 ppm.

STEP 2: The table below shows the number of observations within each interval defined in Step 1.

STEP 3: The horizontal axis for the data is from 0 to 40 ppm. The vertical axis for the frequency plot is from
0 - 10 and the vertical axis for the histogram is from 0% - 10%.

STEP 4: There are 22 observations total, so the number observations shown in the table below will be
divided by 22. The results are shown in column 3 of the table below.

STEP 5: A common unit for this data is 1 ppm. In each interval there are 5 common units so the
percentage of observations (column 3 of the table below) should be divided by 5 (column 4).

STEP 6: The frequency plot is shown in Figure 2.3-1 and the histogram is shown in Figure 2.3-2.

# of Obs % of Obs % of Obs
Interval in Interval in Interval per ppm
0- 5ppm 2 9.10 1.8
5-10 ppm 3 13.60 2.7
10 - 15 ppm 8 36.36 7.3
15 - 20 ppm 6 27.27 55
20 - 25 ppm 1 4.55 0.9
25 - 30 ppm 1 4.55 0.9
30 - 35 ppm 0 0.00 0.0
35 - 40 ppm 1 4.55 0.9
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2.3.2 Stem-and-Leaf Plot

The stem-and-leaf plot is used to show both the numerical values themselves and information about
the distribution of the data. It isauseful method for storing datain a compact form while, at the same time,
sorting the data from smallest to largest. A stem-and-leaf plot can be more useful in analyzing data than a

histogram because it not only allows a visualization of the data distribution, but enables the data to be
reconstructed and lists the observations in the order of magnitude. However, the stem-and-leaf plot is one of

the more subjective visualization techniques because it requires the analyst to make some arbitrary choices
regarding a partitioning of the data. Therefore, this technique may require some practice or trial and error
before a useful plot can be created. As aresult, the stem-and-leaf plot should only be used to develop a
picture of the data and its characteristics. Directions for constructing a stem-and-leaf plot are given in Box
2.3-3 and an exampleis contained in Box 2.3-4.

Each observation in the stem-and-leaf plot consist of two parts: the stem of the observation and the
leaf. The stem is generally made up of the leading digit of the numerical values while the leaf is made up of
trailing digitsin the order that corresponds to the order of magnitude from left to right. The stem is displayed
on the vertical axis and the data points make up the leaves. Changing the stem can be accomplished by
increasing or decreasing the digits that are used, dividing the groupings of one stem (i.e., all numbers which
start with the numeral 6 can be divided into smaller groupings), or multiplying the data by a constant factor
(i.e., multiply the data by 10 or 100). Nondetects can be placed in asingle stem.

A stem-and-leaf plot roughly displays the distribution of the data. For example, the stem-and-|eaf
plot of normally distributed data is approximately bell shaped. Since the stem-and-leaf roughly displays the
distribution of the data, the plot may be used to evaluate whether the data are skewed or symmetric. The top
half of the stem-and-leaf plot will be a mirror image of the bottom half of the stem-and-leaf plot for
symmetric data. Datathat are skewed to the left will have the bulk of datain the top of the plot and less data
spread out over the bottom of the plot.

2.3.3 Box and Whisker Plot

diagram useful for visualizing important statistical quantities of the data. Box
plots are useful in situations where it is not necessary or feasible to portray all
the details of adistribution. Directions for generating a box and whiskers plot +
are contained in Box 2.3-5, and an example is contained in Box 2.3-6.

A box and whisker plot or box plot (Figure 2.3-3) is a schematic ‘

A box and whiskers plot is composed of a central box divided by aline
and two lines extending out from the box called whiskers. The length of the
central box indicates the spread of the bulk of the data (the central 50%) while
the length of the whiskers show how stretched the tails of the distribution are.

The width of the box has no particular meaning; the plot can be made quite
narrow without affecting its visual impact. The sample median isdisplayed asa
line through the box and the sample mean is displayed using a‘+' sign. Any
unusually small or large data points are displayed by a‘*’ on the plot. A box ¥
and whiskers plot can be used to assess the symmetry of the data. If the
distribution is symmetrical, then the box is divided in two equal halves by the

median, the whiskers will be the same length and the number of extreme data Figure 2.3-3. Example
points will be distributed equally on either end of the plot. of a Box and Whisker
Plot
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STEP 1:

Let X,, X, .

STEP 2: Choose either one or more of the leading digits to be the stem values. As an example, for the value
16, 1 could be used as the stem as it is the leading digit.
STEP 3: List the stem values from smallest to largest at the left (along a vertical axis). Enter the leaf (the

Box 2.3-3: Directions for Generating a Stem and Leaf Plot
.., X, represent the n data points. To develop a stem-and-leaf plot, complete the following steps:

Arrange the observations in ascending order. The ordered data is usually labeled (from smallest to
largest) X1y, X2y, «oor X(n)-

remaining digits) values in order from lowest to highest to the right of the stem. Using the value 16
as an example, if the 1 is the stem then the 6 will be the leaf.

Consider the following 22 samples of trifluorine (in ppm): 17.7, 17.4, 22.8, 35.5, 28.6, 17.2 19.1, <4, 7.2, <4,
15.2, 14.7, 14.9, 10.9, 12.4, 12.4, 11.6, 14.7, 10.2, 5.2, 16.5, and 8.9.

Note: If nondetects are present, place them first in the ordered list, using a symbol such as <L. If multiple

Box 2.3-4: Example of Generating a Stem and Leaf Plot

STEP 1: Arrange the observations in ascending order: <4, <4,5.2,7.7,8.9, 10.2, 10.9, 11.6, 12.4, 12.4,
14.7,14.7, 14.9, 15.2, 16.5, 17.2, 17.4, 17.7, 19.1, 22.8, 28.6, 35.5.

STEP 2: Choose either one or more of the leading digits to be the stem values. For the above data, using
the first digit as the stem does not provide enough detail for analysis. Therefore, the first digit will
be used as a stem; however, each stem will have two rows, one for the leaves 0 - 4, the other for th¢|
leaves 5 - 9.

STEP 3: List the stem values at the left (along a vertical axis) from smallest to largest. Enter the leaf (the

remaining digits) values in order from lowest to highest to the right of the stem. The first digit of the
data was used as the stem values; however, each stem value has two leaf rows.

0(0,1,2,3,4) |<4 <4

0(,6,7,8,9) |52 7.7 8.9

1(0,1,2,3,4) |0209 16 24 2.4 47 4.7 4.9
1(5,6,7,8,9) |52 65 7.2 7.4 7.7 9.1
2(0,1,2,3,4) |28

2(,6,7,8,9) |86

30,1,2,3,4) |

3(5,6,7,8,9) |55

detection limits were used, place the nondetects in increasing order of detection limits, using symbols such as
<L1, <L2, etc. If the first stem extends from zero to a value above the detection limit, then nondetects can be
placed in this interval, as shown in the example above. Otherwise, special intervals dedicated to nondetects
can be used.
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Box 2.3-5: Directions for Generating a Box and Whiskers Plot
STEP 1: Set the vertical scale of the plot based on the maximum and minimum values of the data set. Select a
width for the box plot keeping in mind that the width is only a visualization tool. Label the width w; the
horizontal scale then ranges from -%2W to %2W.
STEP 2: Compute the upper quartile (Q(.75), the 75" percentile) and the lower quartile (Q(.25), the 25"
percentile) using Box 2.2-1. Compute the sample mean and median using Box 2.2-2. Then, compute
the interquartile range (IQR) where IQR = Q(.75) - Q(.25).

STEP 3: Draw a box through points ( -%2W, Q(.75) ), (-%2W, Q (.25) ), (%W, Q(.25) ) and ( ¥2W, Q(.75) ). Draw
a line from (*2W, Q(.5)) to (-%2W, Q(.5)) and mark point (0,x) with (+).

STEP 4: Compute the upper end of the top whisker by finding the largest data value X less than
Q(.75) + 1.5( Q(.75) - Q(.25) ). Draw a line from (0, Q(.75)) to (0, X).

Compute the lower end of the bottom whisker by finding the smallest data value Y greater than
Q(.25) - 1.5( Q(.75) - Q(.25) ). Draw a line from (0, Q(.25)) to (O, Y).

STEP 5: For all points X* > X, place an asterisk (*) at the point (0, X*).

For all points Y* <Y, place an asterisk (*) at the point (0, Y*).

Box 2.3-6. Example of a Box and Whiskers Plot

Consider the following 22 samples of trifluorine (in ppm) listed in order from smallest to largest: 4.0, 6.1, 9.8, 10.7,
10.8,11.5, 11.6, 12.4, 12.4, 14.6, 14.7, 14.7, 16.5, 17, 17.5, 20.6, 20.8, 25.7, 25.9, 26.5, 32.0, and 35.5.

STEP 1: The data ranges from 4.0 to 35.5 ppm. This is the range of the vertical axis. Arbitrarily, a width of 4 will
be used for the horizontal axis.

STEP 2: Using the formulas in Box 2.2-2, the sample mean = 16.87 and the

median = 14.70. Using Box 2.2-1, Q(.75) = 20.8 and Q(.25) = 11.5. 407
Therefore, IQR =20.8-11.5=9.3. 357 ¥

STEP 3: Inthe figure, a box has been drawn through points ( -2, 20.8), (-2, 11.5), 30*

(2,11.5), (2, 20.8). Aline has been drawn from (-2, 14.7 ) to ( 2, 14.7), -

and the point (0, 16.87) has been marked with a ‘+’ sign. 25-

STEP 4: Q(.75) + 1.5(9.3) = 34.75. The closest data value to this number, but less 20>
than it, is 32.0. Therefore, a line has been drawn in the figure from } -+

(0, 20.8) to (0, 32.0). 15-

Q(.25) - 1.5(9.3) =-2.45. The closest data value to this number, but greater 10;’

than it, is 4.0. Therefore, a line has been drawn in the figure from -

(0, 4)to (0, 11.5). 5C

O;

STEP 5: There is only 1 data value greater than 32.0 which is 35.5. Therefore, the
point ( 0, 35.5) has been marked with an asterisk. There are no data values
less than 4.0.
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2.3.4 Ranked Data Plot

A ranked data plot is a useful graphical representation that is easy to construct, easy to interpret, and
makes no assumptions about a model for the data. The analyst does not have to make any arbitrary choices
regarding the data to construct a ranked data plot (such as cell sizes for a histogram). In addition, a ranked
data plot displays every data point; therefore, it is a graphical representation of the data instead of a summary
of the data. Directions for developing a ranked data plot are given in Box 2.3-7 and an exampleisgivenin
Box 2.3-8.

A ranked data plot is a plot of the datafrom smallest to largest at evenly spaced intervals (Figure
2.3-4). This graphical representation is very similar to the quantile plot described in section 2.3.5. A ranked
data plot is marginally easier to generate than a quantile plot; however, a ranked data plot does not contain as
much information as a quantile plot. Both plots can be used to determine the density of the data points and
the skewness of the data; however, a quantile plot contains information on the quartiles of the data whereas a
ranked data plot does not.

Data Values
T
[ ]
[ ]

Smallest » | argest

Figure 2.3-4 Example of a Ranked Data Plot

A ranked data plot can be used to determine the density of the datavalues, i.e., if al the data values
are close to the center of the data with relatively few valuesin the tails or if there is alarge amount of values
in one tail with the rest evenly distributed. The density of the datais displayed through the slope of the graph.

A large amount of data values has aflat slope, i.e., the graph rises slowly. A small amount of data values has
alarge slope, i.e., the graph rises quickly. Thusthe analyst can determine where the data lie, either evenly
distributed or in large clusters of points. In Figure 2.3-4, the data rises slowly up to a point where the slope
increases and the graph rises relatively quickly. This means that there is alarge amount of small data values
and relatively few large data values.

A ranked data plot can be used to determine if the data are skewed or if they are symmetric. A
ranked data plot of datathat are skewed to the right extends more sharply at the top giving the graph a
convex shape. A ranked data plot of datathat are skewed to the left increases sharply near the bottom giving
the graph a concave shape. If the data are symmetric, then the top portion of the graph will stretch to upper
right corner in the same way the bottom portion of the graph stretches to lower |eft, creating a s-shape.
Figure 2.3-4 shows aranked data plot of datathat are skewed to the right.
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Box 2.3-7: Directions for Generating a Ranked Data Plot

Let X;, X,, ..., X, represent the n data points. Let X, fori=1ton,
be the data listed in order from smallest to largest so that X, (i = 1)
is the smallest, X, ,, (i = 2) is the second smallest, and X, (i=n) is
the largest. To generate a ranked data plot, plot the ordered X
values at equally spaced intervals along the horizontal axis.

Box 2.3-8: Example of Generating a Ranked Data Plot

Consider the following 22 samples of triflourine (in ppm): 17.7,17.4, 22.8, 35.5, 28.6, 17.2 19.1,
49,7.2,4.0,15.2,14.7,14.9,10.9, 12.4, 12.4, 11.6, 14.7, 10.2, 5.2, 16.5, and 8.9. The data
listed in order from smallest to largest X, along with the ordered number of the observation (i) are:

i l(i)_ i l(i)_
1 4.0 12 14.7
2 4.9 13 14.9
3 5.2 14 15.2
4 7.7 15 16.5
5 8.9 16 17.2
6 10.2 17 17.4
7 10.9 18 17.7
8 11.6 19 191
9 12.4 20 22.8
10 12.4 21 28.6
11 14.7 22 35.5

A ranked data plot of this data is a plot of the pairs (i, X;,). This plot is shown below:

40

Data (ppm)
= [ N N w w
o (¢, o (¢, o ol
L L L L L L B L B
L]
[ ]

[ ]

[ )

[ )

[ )

[ )
[ )

ol
T
[ ]
[ ]
[ ]

Smallest » | argest
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2.3.5 Quantile Plot

A quantile plot (Figure 2.3-5) is a graphical representation of the data that is easy to construct, easy
to interpret, and makes no assumptions about a model for the data. The analyst does not have to make any
arbitrary choices regarding the data to construct a quantile plot (such as cell sizes for a histogram). In
addition, a quantile plot displays every data point; therefore, it is a graphical representation of the data
instead of a summary of the data.

A quantile plot is agraph of the quantiles (section 2.2.1) of the data. The basic quantile plot is
visually identical to aranked data plot except its horizontal axis varies from 0.0 to 1.0, with each point
plotted according to the fraction of the points it exceeds. This allows the addition of vertical linesindicating
the quartiles or, any other quantiles of interest. Directions for developing a quantile plot are given in Box
2.3-9 and an exampleis given in Box 2.3-10.

<— Interquartile Range ——»t

Lower Upper
Quatrtile Quatrtile

O L | L | | L | L
0 0.2 0.4 0.6 0.8 1

Fraction of Data (f-values)

-— —

Data Values
N
T

Figure 2.3-5 Example of a Quantile Plot of Skewed Data

A quantile plot can be used to read the quantile information such as the median, quartiles, and the
interquartile range. In addition, the plot can be used to determine the density of the data points, e.g., are all
the data values close to the center with relatively few valuesin the tails or are there alarge amount of values
in one tail with the rest evenly distributed? The density of the data is displayed through the slope of the

graph. A large amount of data values has aflat slope, i.e., the graph rises slowly. A small amount of data
values has a large slope, i.e., the graph rises quickly. A quantile plot can be used to determine if the data are
skewed or if they are symmetric. A quantile plot of data that are skewed to the right is steeper at the top right
than the bottom left, asin Figure 2.3-5. A quantile plot of data that are skewed to the left increases sharply
near the bottom left of the graph. If the data are symmetric then the top portion of the graph will stretch to
the upper right corner in the same way the bottom portion of the graph stretches to the lower left, creating an
s-shape.
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Box 2.3-9: Directions for Generating a Quantile Plot

Let X, X,, ..., X, represent the n data points. To obtain a quantile plot, let X;,, for
i =1ton, be the data listed in order from smallest to largest so that X, (i=1) is
the smallest, X,, (i = 2) is the second smallest, and X, (i = n) is the largest. For
each i, compute the fraction f= (i - 0.5)/n. The quantile plot is a plot of the pairs
(f. Xiy), with straight lines connecting consecutive points.

Box 2.3-10: Example of Generating a Quantile Plot
Consider the following 10 data points: 4 ppm, 5 ppm, 6 ppm, 7 ppm, 4 ppm, 10 ppm, 4 ppm, 5 ppm, 7 ppm,
and 8 ppm. The data ordered from smallest to largest, X;,, are shown in the first column of the table below
and the ordered number for each observation, i, is shown in the second column. The third column displays the
values f, for each i where f = (i - 0.5)/n.
X(i) i —fi_ X(i) i _fi_
1 0.05 6 6 0.55
4 2 0.15 7 7 0.65
4 3 0.25 7 8 0.75
5 4 0.35 8 9 0.85
5 5 0.45 10 10 0.95
The pairs (f, X ;,) are then plotted to yield the following quantile plot:
10
E 8f
Q.
RS
©
o
O 61
4 L
L | L | L | L | L
0 0.2 0.4 0.6 0.8 1
Fraction of Data (f-values)
Note that the graph curves upward; therefore, the data appear to be skewed to the right.
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2.3.6  Normal Probability Plot (Quantile-Quantile Plot)

There are two types of quantile-quantile plots or g-g plots. Thefirst type, an empirical quantile-
guantile plot (section 2.3.7.4), involves plotting the quantiles of two data variables against each other. The
second type of a quantile-quantile plot, atheoretical quantile-quantile plot, involves graphing the quantiles of
a set of data against the quantiles of a specific distribution. The following discussion will focus on the most
common of these plots for environmental data, the normal probability plot (the normal g-q plot); however, the
discussion holds for other g-g plots. The normal probability plot is used to roughly determine how well the
data set is modeled by a normal distribution. Formal tests are contained in Chapter 4, section 2. Directions
for developing a normal probability plot are given in Box 2.3-11 and an exampleis given in Box 2.3-12.

A normal probability plot isthe graph of the quantiles of a data set against the quantiles of the
normal distribution using normal probability graph paper (Figure 2.3-6). If the graph islinear, the data may
be normally distributed. If the graph is not linear, the departures from linearity give important information
about how the data distribution deviates from a normal distribution.

If the graph of the normal probability plot is not linear, the graph may be used to determine the
degree of symmetry (or asymmetry) displayed by the data. If the data are skewed to the right, the graph is
convex. If the data are skewed to the l€eft, the graph is concave. If the datain the upper tail fall above and the
datain the lower tail fall below the quartile line, the data are too slender to be well modeled by a normal
distribution, i.e., there are fewer values in the tails of the data set than what is expected from a normal
distribution. If the datain the upper tail fall below and the datain the lower tail fall above the quartile line,
then the tails of the data are too heavy to be well modeled using a normal distribution, i.e., there are more
valuesin the tails of the datathan what is expected from a normal distribution. A normal probability plot can
be used to identify potential outliers. A datavalue (or afew data values) much larger or much smaller than
the rest will cause the other data values to be compressed into the middle of the graph, ruining the resolution.

Box 2.3-11: Directions for Constructing a Normal Probability Plot
Let X;, X,, ..., X, represent the n data points.

STEP 1: For each data value, compute the absolute frequency, AF. The absolute frequency is the number
of times each value occurs. For distinct values, the absolute frequency is 1. For non-distinct
observations, count the number of times an observation occurs. For example, consider the data 1,
2, 3, 3. The absolute frequency of value 1 is 1 and the absolute frequency of value 2 is 1. The
absolute frequency of value 3 is 2 since 3 appears 2 times in the data set.

STEP 2: Compute the cumulative frequencies, CF. The cumulative frequency is the number of data points

|
that are less than or equal to X, i.e., CF; = Z AFj. Using the data given in step 2, the
j=1
cumulative frequency for value 1 is 1, the cumulative frequency for value 2 is 2 (1+1), and the
cumulative frequency for value 3 is 4 (1+1+2).

STEP 3: Compute Y, = 100 X

D) and plot the pairs (Y;, X;) using normal probability paper (Figure
n+

2.3-6). If the graph of these pairs approximately forms a straight line, then the data are probably
normally distributed. Otherwise, the data may not be normally distributed.
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Box 2.3-12: Example of Normal Probability Plot
Consider the following 15 data points: 5, 5, 6, 6, 8, 8, 9, 10, 10, 10, 10, 10, 12, 14, and 15.
STEP 1: Because the value 5 appears 2 times, its absolute frequency is 2. Similarly, the absolute frequency of 6 is
2,0f8is2,0f9is 1, of 10is 5, etc. These values are shown in the second column of the table below.
STEP 2: The cumulative frequency of the data value 8 is 6 because there are 2 values of 5, 2 values of 6, and 2
values of 8. The cumulative frequencies are shown in the 3 column of the table.
CF,
STEP3: Thevalues Y, = 100 X (——)for each data point are shown in column 4 of the table below. A plot of
n+
these pairs (Y;, X;) using normal probability paper is also shown below.
Individual Absolute Cumulative
i X Frequency AF; Frequency CF; Y;
1 5 2 2 12.50
2 6 2 4 25.00
3 8 2 6 37.50
4 9 1 7 43.75
5 10 5 12 75.00
6 12 1 13 81.25
7 14 1 14 87.50
8 15 1 15 93.75
20
18
16
14 el
12
X
10 A
8 NA
6 =g
4
2
0 2 5 10 20 30 40 50 60 70 80 90 95 98
Y
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0.01 0.05 0.1 0.2 0.5 1 2 5 10 20 30 40 50 60 70 80 90 95 98 99 99.8 99.9 99.99

Figure 2.3-6. Normal Probahility Paper
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2.3.7 Plotsfor Twoor MoreVariables

Data often consist of measurements of several characteristics (variables) for each sample point in the
data set. For example, a data set may consist of measurements of weight, sex, and age for each animal in a
sample or may consist of daily temperature readings for several cities. In this case, graphs may be used to
compare and contrast different variables. For example, the analyst may wish to compare and contrast the
temperature readings for different cities, or different sample points (each containing several variables) such
the height, weight, and sex across individuals in a study.

To compare and contrast individual data points, some special plots have been developed to display
multiple variables. These plots are discussed in section 2.3.7.1. To compare and contrast several variables,
collections of the single variable displays described in previous sections are useful. For example, the analyst
may generate box and whisker plots or histograms for each variable using the same axis for all of the
variables. Separate plots for each variable may be overlaid on one graph, such as overlaying quantile plots
for each variable on one graph. Another useful technique for comparing two variables is to place the stem
and leaf plots back to back. In addition, some special plots have been developed to display two or more
variables. These plots are described in sections 2.3.7.2 through 2.3.7.4.

2.3.7.1 Plotsfor Individual Data Points

Since it is difficult to visualize datain more than 2 or 3 dimensions, most of the plots developed to
display multiple variables for individual data points involve representing each variable as a distinct piece of a
two-dimensional figure. Some such plots include Profiles, Glyphs, and Stars (Figure 2.3-7). These graphical
representations start with a specific symbol to represent each data point, then modify the various features of
the symbol in proportion to the magnitude of each variable. The proportion of the magnitude is determined
by letting the minimum value for each variable be of length 0, the maximum be of length 1. The remaining
values of each variable are then proportioned based on the magnitude of each value in relation to the
maximum and minimum.

iy <K

Profile Plot Glyph Plot Star Plot

Figure 2.3-7. Example of Graphical Representations of Multiple
Variables

A profile plot starts with aline segment of afixed length. Then lines spaced an equal distance apart
and extended perpendicular to the line segment represent each variable. A glyph plot uses acircle of fixed
radius. From the perimeter, parallel rays whose sizes are proportional to the magnitude of the variable extend
from the top half of thecircle. A star plot starts with a point where rays spaced evenly around the circle
represent each variable and a polygon is then drawn around the outside edge of the rays.
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2.3.7.2 Scatter Plot

For data sets consisting of paired observations where two or more continuous variables are measured
for each sampling point, a scatter plot is one of the most powerful tools for analyzing the relationship
between two or more variables. Scatter plots are easy to construct for two variables (Figure 2.3-8) and many
computer graphics packages can construct 3-dimensional scatter plots. Directions for constructing a scatter
plot for two variables are given in Box 2.3-13 along with an example.

A scatter plot clearly shows the
relationship between two variables. Both
potential outliers from a single variable and 40 -
potential outliers from the paired variables | *ox
may be identified on this plot. A scatter
plot also displays the correlation between
the two variables. Scatter plots of highly
linearly correlated variables cluster
compactly around a straight line. In
addition, nonlinear patterns may be obvious
on a scatter plot. For example, consider two KK x ¥
variables where one variable is TS *x *
approximately equal to the square of the % ’
other. A scatter plot of this datawould Chromium VI (ppb)
display a u-shaped (parabolic) curve.
Another important feature that can be Figure 2.3-8 Example of a Scatter Plot
detected using a scatter plot is any
clustering effect among the data.

30

20 -

PCE (ppb)

Box 2.3-13: Directions for Generating a Scatter Plot and an Example

Let X;, X,, ..., X, represent one variable of the n data points and let Y, Y,, ..., Y, represent a second variable of
the n data points. The paired data can be written as (X, Y;) fori=1, ..., n. To construct a scatter plot, plot the
first variable along the horizontal axis and the second variable along the vertical axis. It does not matter which
variable is placed on which axis.

Example: A scatter plot will be developed for the data below. PCE values are displayed on the vertical axis and
Chromium VI values are displayed on the horizontal axis of Figure 2.3-8.

PCE Chromium PCE Chromium PCE Chromium

(ppb) VI (ppb) (ppb) | VI (ppb) (ppb) VI (ppb)
14.49 3.76 2.23 0.77 4.14 2.36
37.21 6.92 3.51 1.24 3.26 0.68
10.78 1.05 6.42 3.48 5.22 0.65
18.62 6.30 2.98 1.02 4.02 0.68
7.44 1.43 3.04 1.15 6.30 1.93
37.84 6.38 12.60 5.44 8.22 3.48
13.59 5.07 3.56 2.49 1.32 2.73
431 3.56 7.72 3.01 7.73 1.61
5.88 1.42
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2.3.7.3 Extensionsof the Scatter Plot

It is easy to congtruct a 2-dimensional scatter plot by hand and many software packages can construct
auseful 3-dimensional scatter plot. However, with more than 3 variables, it is difficult to construct and
interpret a scatter plot. Therefore, severa graphical representations have been devel oped that extend the idea
of ascatter plot for data consisting of 2 or more variables.

The smplest of these graphical

representations is a coded scatter plot.
In this case, all possible pairs of data are 4 i Chromium vs. PCE
given a code and plotted on one scatter - Avazine vs, PCE
plot. For example, consider a data set of S Atrazine vs. Chromium IV
3variables; variable A, variable B, and i -
variable C. Using thefirst variable to
designate the horizontal axis, the anayst

may choose to display the pairs (A, B) o L L N
usnganx,thepalrs(A,C) usngay, S %k
and the pairs (B, C) usngaZ on one 8 ®,
scatter plot. All of the information % ‘ 10 20
described above for a scatter plot is also (ppb)

available on a coded scatter plot.

20

(ppb)

However, this method assumes that the Figure 2.3-9. Example of a Coded Scatter Plot

ranges of the three variables are

comparable and does not provide information on three-way or higher interactions between the variables. An
example of a coded scatter plot is given in Figure 2.3-9.

A pardlel coordinate plot also extends the idea of a scatter plot to higher dimensions. The paralle
coordinates method employs a scheme where coordinate axes are drawn in parallel (instead of perpendicular).
Consder asample point X consisting of vaues X ; for variable 1, X, for variable 2, and so on up to X , for
variablep. A paralld coordinate plot

is constructed by placing an axis for ‘
each of the p variables parallel to 0
each other and plotting X ; on axis 1,
X, on axis 2, and so on through X,
on axis p and joining these points
with abroken line. This method
contains al of the information L
available on a scatter plot in addition 0
to information on 3-way and higher
interactions (e.g., clustering among
three variables). However, for p
variables one must construct (p+1)/2
parallel coordinate plotsin order to ‘ | Data Values for
display dl possible pairs of variables. 0 1 2 3 4 5 6 7 g verevles

| Data Values for
Variable 1

40

,  Data Values for
Variable 2

n PR R S NN SR ST S '
9 10 11 12 13 14

An @(&ﬁplepf a'parallel coordinate Figure 2.3-10. Example of a Parallel Coordinates Plot
plot isgiven in Figure 2.3-10.
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A scatter plot matrix is another useful method of extending scatter plots to higher dimensions. In
this case, a scatter plot is developed for all possible pairs of the variables which are then displayed in a matrix
format. This method is easy to implement and provides a concise method of displaying the individual scatter

plots. However, this method does not contain information on 3-way or higher interactions between variables.
An example of ascatter plot matrix is contained in Figure 2.3-11.
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Figure 2.3-11. Example of a Matrix Scatter Plot

2.3.7.4 Empirical Quantile-Quantile Plot

An empirical quantile-quantile (g-g) plot involves plotting the quantiles of two data variables against
each other. This plot is used to compare distributions of two or more variables; for example, the analyst may
wish to compare the distribution of lead and iron samples from a drinking water well. Thisplot issimilar in
concept to the theoretical quantile-quantile plot and yields similar information in regard to the distribution of
two variables instead of the distribution of one variable in relation to a fixed distribution. Directions for
constructing an empirical g-q plot with an example are given in Box 2.3-14.

An empirical g-q plot is the graph of the quantiles of one variable of a data set against the quantiles
of another variable of the data set. This plot is used to determine how well the distribution of the two
variables match. If the distributions are roughly the same, the graph islinear or closeto linear. If the
distributions are not the same, than the graph is not linear. Even if the graph is not linear, the departures from
linearity give important information about how the two data distributions differ. For example, ag-qg plot can
be used to compare the tails of the two data distributions in the same manner a normal probability plot was
used to compare the tails of the data to the tails of a normal distribution. In addition, potential outliers (from
the paired data) may be identified on this graph.
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Box 2.3-14: Directions for Constructing an Empirical Q-Q Plot with an Example

Let X;, X,, ..., X, represent n data points of one variable and let Y,, Y,, ..., Y,, represent a second variable of m
data points. Let X;), fori=1to n, be the first variable listed in order from smallest to largest so that X, (i = 1)
is the smallest, X, (i = 2) is the second smallest, and X, (i = n) is the largest. Let Y|, fori=1to n, be the
second variable listed in order from smallest to largest so that Y, (i = 1) is the smallest, Y, (i = 2) is the
second smallest, and Y., (i = m) is the largest.

If m = n: If the two variables have the same number of observations, then an empirical g-q plot of the two
variables is simply a plot of the ordered values of the variables. Since n=m, replace m by n. A plot of the pairs
Ky Yy K2y Y(29)s -oos Ky Y(ny) is @an empirical quantile-quantile plot.

If n > m: If the two variables have a different number of observations, then the empirical quantile-quantile plot
will consist of m (the smaller number) pairs. The empirical g-q plot will then be a plot of the ordered Y values
against the interpolated X values. Fori=1,i=2,...,i=m,letv =(n/m)(i - 0.5) + 0.5 and separate the result
into the integer part and the fractional part, i.e., let v = j + g where j is the integer part and g is the fraction part.
If g =0, plot the pair (Y;,, X(;,). Otherwise, plot the pair (Y;), (1-9)X;, + 9X(;+1))- A plot of these pairs is an
empirical quantile-quantile plot.

Example: Consider two sets of contaminant readings from two separate drinking water wells at the same site.
The data from well 1 are: 1.32, 3.26, 3.56, 4.02, 4.14, 5.22, 6.30, 7.72, 7.73, and 8.22. The data from well 2
are: 0.65, 0.68, 0.68, 1.42, 1.61, 1.93, 2.36, 2.49, 2.73, 3.01, 3.48, and 5.44. An empirical g-q plot will be
used to compare the distributions of these two wells. Since there are 10 observations in well 1, and 12
observations in well, the case for n = m will be used. Therefore, fori=1, 2, ..., 10, compute:

i=1: Vv = %(1—.5)+.5 1.1 soj=1and g=.1. Since g+0, plot (1.32,(.9).65+(.1).68)=(1.32, 0.653)

i=2: VvV = %(2—.5)+.5 2.3 soj=2 and g=.3. Since g=0, plot (3.26,(.7).68+(.3).68)=(3.26, 0.68)

i=3: Vv = %(3—.5)+.5 3.5 soj=3 and g=.5. Since g=0, plot (3.56,(.5).68+(.5)1.42)=(3.56,1.05)

Continue this process fori =4, 5, 6, 7, 8, 9, and 10 to yield the following 10 data pairs (1.32, 0.653), (3.26,
0.68), (3.56, 1.05), (4.02, 1.553), (4.14, 1.898), (5.22, 2.373), (6.30, 2.562), (7.72, 2.87), (7.73, 3.339), and
(8.22, 5.244). These pairs are plotted below, along with the best fitting regression line.

10

Quantiles of Well 2
um

O L | L | L | L | L
0 2 4 6 8 10

Quantiles of Well 1

This graph indicates the variables behave roughly the same since there are no substantial deviations from the
fitted line.
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2.3.8 Plotsfor Temporal Data

Data collected over specific time intervals (e.g., monthly, biweekly, or hourly) have atemporal
component. For example, air monitoring measurements of a pollutant may be collected once a minute or once
aday; water quality monitoring measurements of a contaminant level may be collected weekly or monthly.
An analyst examining temporal data may be interested in the trends over time, correlation among time
periods, and cyclical patterns. Some graphical representations specific to temporal data are the time plot,
correlogram, and variogram.

Data collected at regular time intervals are called time series. Time series data may be analyzed
using Box-Jenkins modeling and spectral analysis. Both of these methods require a large amount of data
collected at regular intervals and are beyond the scope of this guidance. It isrecommended that the interested
reader consult a statistician.

The graphical representations presented in this section are recommended for all datathat have a
temporal component regardless of whether formal statistical time series analysis will be used to analyze the
data. If the analyst uses a time series methodol ogy, the graphical representations presented below will play
an important role in this analysis. If the analyst decides not to use time series methodologies, the graphical
representations described below will help identify temporal patterns that need to be accounted for in the
analysis of the data.

The analyst examining temporal environmental data may be interested in seasonal trends, directional
trends, serial correlation, and stationarity. Seasonal trends are patterns in the data that repeat over time, i.e.,
the data rise and fall regularly over one or more time periods. Seasonal trends may be large scale, such asa
yearly trend where the data show the same pattern of rising and falling over each year, or the trends may be
small scale, such as adaily trend where the data show the same pattern for each day. Directional trends are
downward or upward trends in the data which is of importance to environmental applications where
contaminant levels may be increasing or decreasing. Serial correlation is a measure of the extent to which
successive observations are related. |f successive observations are related, statistical quantities calcul ated
without accounting for serial correlation may be biased. Finally, another item of interest for temporal datais
stationarity (cyclical patterns). Stationary data look the same over al time periods. Directional trends and
increasing (or decreasing) variability among the data imply that the data are not stationary.

Temporal data are sometimes used in environmental applications in conjunction with a statistical
hypothesis test to determine if contaminant levels have changed. If the hypothesis test does not account for
temporal trends or seasonal variations, the data must achieve a“ steady state” before the hypothesis test may
be performed. Therefore, the data must be essentially the same for comparable periods of time both before
and after the hypothesized time of change.

Sometimes multiple observations are taken in each time period. For example, the sampling design
may specify selecting 5 samples every Monday for 3 months. If thisisthe case, the time plot described in
section 2.3.8.1 may be used to display the data, display the mean weekly level, display a confidence interval
for each mean, or display a confidence interval for each mean with the individual datavalues. A time plot of
all the data can be used to determine if the variability for the different time periods changes. A time plot of
the means can be used to determine if the means are possibly changing between time periods. In addition,
each time period may be treated as a distinct variable and the methods of section 2.3.7 may be applied.
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2.3.8.1 TimePlot

One of the simplest plots to generate that provides alarge amount of information isatime plot. A
time plot isaplot of the data over time. This plot makesit easy to identify large-scale and small-scale trends
over time. Small-scale trends show up on atime plot as fluctuations in smaller time periods. For example,
ozone levels over the course of one day typically rise until the afternoon, then decrease, and this processis
repeated every day. Larger scale trends, such as seasonal fluctuations, appear as regular rises and dropsin
the graph. For example, ozone levels tend to be higher in the summer than in the winter so ozone data tend to
show both adaily trend and a seasonal trend. A time plot can also show directional trends and increased
variability over time. Possible outliers may also be easily identified using atime plot.
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Figure 2.3.12 Example of a Time Plot Showing a Slight Downward Trend

A time plot (Figure 2.3-12) is constructed by numbering the observationsin order by time. Thetime
ordering is plotted on the horizontal axis and the corresponding observation is plotted on the vertical axis.
The points plotted on atime plot may be joined by lines; however, it is recommended that the plotted points
not be connected to avoid creating a false sense of continuity. The scaling of the vertical axis of atimeplot is
of some importance. A wider scale tends to emphasize large-scale trends, whereas a smaller scale tendsto
emphasize small-scale trends. Using the ozone example above, a wide scale would emphasi ze the seasonal
component of the data, whereas a smaller scale would tend to emphasize the daily fluctuations. Directions for
constructing atime plot are contained in Box 2.3-15 along with an example.

Box 2.3-15: Directions for Generating a Time Plot and an Example

Let X;, X,, ..., X, represent n data points listed in order by time, i.e., the subscript represents the ordered time
interval. A plot of the pairs (i, X) is a time plot of this data.

Example: Consider the following 50 daily observations (listed in order by day): 10.05, 11.22, 15.9, 11.15, 10.53,
13.33,11.81, 14.78, 10.93, 10.31, 7.95, 10.11, 10.27, 14.25, 8.6, 9.18, 12.2, 9.52, 7.59, 10.33, 12.13, 11.31,
10.13,7.11, 6.72, 8.97, 10.11, 7.72, 9.57, 6.23, 7.25, 8.89, 9.14, 12.34, 9.99, 11.26, 5.57, 9.55, 8.91, 7.11, 6.04,
8.67,5.62,5.99,5.78, 8.66, 5.8, 6.9, 7.7, 8.87. By labeling day 1 as 1, day 2 as 2, and so on, a time plot is
constructed by plotting the pairs (i, X) where i represents the number of the day and X represents the concentration
level. A time plot of this data is shown in Figure 2.3-12.
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2.3.8.2 Plot of the Autocorrelation Function (Correlogram)

Serial correlation is a measure of the extent to which successive observations are related. |If

successive observations are related, either the data must be transformed or this relationship must be
accounted for in the analysis of the data. The correlogram is a plot that is used to display serial correlation
when the data are collected at equally spaced time intervals. The autocorrelation function is a summary of the
serial correlations of data. The T autocorrelation coefficient () is the correlation between points that are 1
time unit (k) apart; the 2" autocorrelation coefficient () is the correlation between points that are 2 time

units (k,) apart; etc. A correlogram (Figure 2.3-13) is a plot of the sample autocorrelation coefficientsin
which the values of k versus the values of,rare displayed. Directions for constructing a correlogram are
contained in Box 2.3-16; example calculations are contained in Box 2.3-17. For large sample sizes, a
correlogram is tedious to construct by hand; therefore, software like DataQUEST (QA/G-9D) should be used.

The correlogram is used for modeling
time series data and may be used to determine if 1.25
serial correlation is large enough to create 1 b
problemsin the analysis of temporal data using *

. . . . 0.75
other methodol ogies besides formal time series »
methodologies. A quick method for determining < 05F y
if serial correlation islargeis to place horizontal = 025l N S
lines at +2//n on the correlogram (shown as * % Ko K
dashed lines on Figure 2.3-13). Autocorrelation or X x X xX
coefficients that exceed this value require further 025 X
investigation. o] T S A T R
0 5 10 15 20 25 30
. : k
In application, the correlogram is only

useful for data at equally spaced intervals. To Figure 2.3-13. Example of a Correlogram
relax this restriction, a variogram may be used

instead. The variogram displays the same
information as a correlogram except that the data may be based on unequally spaced time intervals. For more
information on the construction and uses of the variogram, consult a statistician.

Box 2.3-16: Directions for Constructing a Correlogram

Let X;, X,, ..., X, represent the data points ordered by time for equally spaced time points, i.e., X was collected at
time 1, X, was collected at time 2, and so on. To construct a correlogram, first compute the sample autocorrelation
coefficients. So fork =0, 1, ..., compute r, where

Oy 3

e =— and g, = Y (X - X) (X - X).
go t=k+1
Once the r, have been computed, a correlogram is the graph (k, ) fork=0,1,...,and soon. As a

approximation, compute up to approximately k = n/6. Also, note that = 1. Finally, place horizontal lines at +2/'n.
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Box 2.3-17: Example Calculations for Generating a Correlogram

A correlogram will be constructed using the following four hourly data points: hour 1: 4.5, hour 2: 3.5, hour 3: 2.5,
and hour 4: 1.5. Only four data points are used so that all computations may be shown. Therefore, the idea that
no more than n/6 autocorrelation coefficients should be computed will be broken for illustrative purposes. The first
step to constructing a correlogram is to compute the sample mean (box 2-2) which is 3 for the 4 points. Then,

Z (yt _9)2

z - 4.5-3)2+(3.5-3)2+(2.5-3)%+(1.5-3)2
% = X NV = 5 = (453« );( )" (L5731 _ 4 5
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2 2
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4 2
4
-3)(y,_,-3
.- 200Dy gy, + (,-90,9
2 4 4
_ (25-3(45-3) + (15-935-3) _ 15 _ .
2 2
4
-3)(y..-3
B g;(yt a7 4,313 (15-3)(45-3) 225
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4 4 4 4
Sor, =2 0315 o5 o % 23D _ 03 agr, -2 o205 gy
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Remember r, = 1. Thus, the correlogram of these data is a plot of (0, 1) (1, 0.25), (2, -0.3) and (3, -0.45) with two
horizontal lines at +2//4 (x1). This graph is shown below.

In this case, it appears that the observations are not serially correlated because all of the correlogram points are
within the bounds of £2/4 (+1.0). In Figure 2.3-13, if k represents months, then the correlogram shows a yearly
correlation between data points since the points at k=12 and k=24 are out of the bounds of £2#n. This correlation
will need to be accounted for when the data are analyzed.
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Box 2.3-17: Example Calculations for Generating a Correlogram
(Continued)
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2.3.8.3 Multiple Observations Per Time Period

Sometimes in environmental data collection, multiple observations are taken for each time period.
For example, the data collection design may specify collecting and analyzing 5 samples from a drinking well
every Wednesday for three months. If thisis the case, the time plot described in section 2.3.8.1. may be used
to display the data, display the mean weekly level, display a confidence interval for each mean, or display a
confidence interval for each mean with the individual datavalues. A time plot of all the data will allow the
analyst to determine if the variability for the different collection periods varies. A time plot of the means will
allow the analyst to determine if the means may possibly be changing between the collection periods. In
addition, each collection period may be treated as a distinct variable and the methods described in section
2.3.7 may be applied.
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2.3.9 Plotsfor Spatial Data

The graphical representations of the preceding sections may be useful for exploring spatial data.
However, an analyst examining spatial data may be interested in the location of extreme values, overall
spatial trends, and the degree of continuity among neighboring locations. Graphical representations for
spatial datainclude postings, symbol plots, correlograms, h-scatter plots, and contour plots.

The graphical representations presented in this section are recommended for all spatial data
regardless of whether or not geostatistical methods will be used to analyze the data. The graphical
representations described below will help identify spatial patterns that need to be accounted for in the analysis
of the data. If the analyst uses geostatistical methods such as kriging to analyze the data, the graphical
representations presented below will play an important role in geostatistical analysis.

2.3.9.1 Posting Plots

A posting plot (Figure 2.3-14) is amap of data locations along with corresponding data values. Data
posting may reveal obvious errors in data location and identify data values that may be in error. The graph of
the sampling locations gives the analyst an idea of how the data were collected (i.e., the sampling design),
areas that may have been inaccessible, and areas of special interest to the decision maker which may have
been heavily sampled. It is often useful to mark the highest and lowest values of the datato seeif there are
any obvioustrends. If al of the highest concentrations fall in one region of the plot, the analyst may consider
some method such as post-stratifying the data (stratification after the data are collected and analyzed) to

account for thisfact in the analysis. Directions for generating a posting of the data (a posting plot) are
contained in Box 2.3-18.

Road

22.8 19.1

4.9 17.2

Figure 2.3-14 Example of a Posting Plot
2.3.9.2 Symbol Plots
For large amounts of data, a posting plot may not be feasible and a symbol plot (Figure 2.3-15) may

beused. A symbol plot is basically the same as a posting plot of the data, except that instead of posting
individual data values, symbols are posted for ranges of the data values. For example, the symbol '0' could
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represent all concentration levels less than 100 ppm, the symbol '1' could represent all concentration levels
between 100 ppm and 200 ppm, etc. Directions for generating a symbol plot are contained in Box 2.3-18.

3 3 2

7 2 3
o
<
o
@

2 4 3

1 0 3

Figure 2.3-15 Example of a Symbol Plot

Box 2.3-18: Directions for Generating a Posting Plot and a Symbol Plot
with an Example

On a map of the site, plot the location of each sample. At each location, either indicate the value of the data
point (a posting plot) or indicate by an appropriate symbol (a symbol plot) the data range within which the
value of the data point falls for that location, using one unique symbol per data range.

Example: The spatial data displayed in the table below contains both a location (Northing and Easting) and a
concentration level ([c]). The data range from 4.0 to 35.5 so units of 5 were chosen to group the data:

Range Symbol Range Symbol
0.0- 4.9 0 20.0-24.9 4
5.0- 9.9 1 25.0-29.9 5
10.0- 14.9 2 30.0-34.9 6
15.0-19.9 3 35.0-39.9 7

The data val ues with corresponding symbols then become:

Northing Easting [c] Symbol Northing Easting  [c] Symbol
25.0 0.0 4.0 0 15.0 15.0 16.5 3
25.0 5.0 11.6 2 15.0 0.0 8.9 1
25.0 10.0 14.9 2 10.0 5.0 14.7 2
25.0 15.0 17.4 3 10.0 10.0 10.9 2
20.0 0.0 17.7 3 10.0 15.0 124 2
20.0 5.0 124 2 5.0 0.0 22.8 4
20.0 10.0 28.6 5 5.0 5.0 19.1 3
20.0 15.0 7.7 1 5.0 10.0 10.2 2
15.0 0.0 15.2 3 5.0 15.0 5.2 1
15.0 5.0 355 7 0.0 5.0 4.9 0
15.0 10.0 14.7 2 0.0 15.0 17.2 3

The posting plot of this data is displayed in Figure 2.3-14 andthe symbol plot is displayed in Figure 2.3-15.
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2.3.9.3 Other Spatial Graphical Representations

The two plots described in sections 2.3.9.1 and 2.3.9.2 provide information on the location of
extreme values and spatial trends. The graphs below provide another item of interest to the data analyst,
continuity of the spatial data. The graphical representations are not described in detail because they are used
more for preliminary geostatistical analysis. These graphical representations can be difficult to develop and
interpret. For more information on these representations, consult a statistician.

An h-scatterplot isaplot of all possible pairs of data whose locations are separated by a fixed
distance in afixed direction (indexed by h). For example, a h-scatter plot could be based on all the pairs
whose locations are 1 meter apart in a southerly direction. A h-scatter plot is similar in appearance to a
scatter plot (section 2.3.7.2). The shape of the spread of the datain a h-scatter plot indicates the degree of
continuity among data values a certain distance apart in particular direction. If all the plotted values fall close
to afixed line, then the data values at |ocations separated by a fixed distance in afixed location are very
similar. Asdatavalues become less and less similar, the spread of the data around the fixed line increases
outward. The data analyst may construct several h-scatter plots with different distances to evaluate the
changein continuity in afixed direction.

A correlogram is a plot of the correlations of the h-scatter plots. Because the h-scatter plot only
displays the correlation between the pairs of datawhose locations are separated by a fixed distance in a fixed
direction, it is useful to have a graphical representation of how these correlations change for different
separation distances in afixed direction. The correlogram is such a plot which allows the analyst to evaluate
the change in continuity in afixed direction as a function of the distance between two points. A spatial
correlogram is similar in appearance to atemporal correlogram (section 2.3.8.2). The correlogram spans
opposite directions so that the correlogram with a fixed distance of due north isidentical to the correlogram
with afixed distance of due south.

Contour plots are used to reveal overall spatial trends in the data by interpolating data values
between sample locations. Most contour procedures depend on the density of the grid covering the sampling
area (higher density grids usually provide more information than lower densities). A contour plot gives one
of the best overall pictures of the important spatial features. However, contouring often requires that the
actual fluctuations in the data values are smoothed so that many spatial features of the data may not be
visible. The contour map should be used with other graphical representations of the data and requires expert
judgement to adequately interpret the findings.
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CHAPTER 3

STEP 3: SELECT THE STATISTICAL TEST

THE DATA

QUALITY ASSESSMENT PROCESS

Review DQOs and Sampling Design

‘ SELECT THE STATISTICAL TEST
Conduct Preliminary Data Review Purpose
‘ Select an appropriate procedure for analyzing

data based on the preliminary data review.

Select the Statistical Test

‘ Activities

Verify the Assumptions + Select Statistical Hypothesis Test
‘ + Identify Assumptions Underlying Test
Draw Conclusions From the Data Tools

- Hypothesis tests for a single population
« Hypothesis tests for comparing two populations

Step 3. Sdlect the Statistical Test

Select the statistical hypothesis test based on the data user's objectives and the results of the

preliminary data review.

= If the problem involves comparing study results to a fixed threshold, such as a regulatory
standard, consider the hypothesis tests in section 3.2.

= |f the problem involves comparing two populations, such as comparing data from two different
locations or processes, then consider the hypothesis tests in section 3.3.

Identify the assumptions underlying the statistical test.

= List the key underlying assumptions of the statistical hypothesis test, such as distributional form,

dispersion, independence, or others as applicable.

= Note any sensitive assumptions where relatively small deviations could jeopardize the validity of

the test results.
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STEP 3. SELECT THE STATISTICAL TEST

Parameter Test Section | Directions | Example
Mean One-Samplet-Test 3211 Box 3.2-1 Box 3.2-2
Box 3.2-3 Box 3.2-4
Wilcoxon Signed Rank Test 3212 | Box3.2-5 Box 3.2-6

Box 3.2-7
Proportion/ Percentile | One-Sample Proportion Test 3221 | Box3.2-8 Box 3.2-9
Two Means Two-Samplet-Test 3311 Box 3.3-1 Box 3.3-2

Satterthwaite's Two-Sample t-Test 3312 | Box3.3-3 Box 3.3-4

Two ProportionsTwo | Two-Sample Test for Proportions 3321 | Box3.3-5 Box 3.3-6

Percentiles
Non-Parametric Wilcoxon Rank Sum Test 3331 | Box3.3-7 Box 3.3-8
Comparison of Two Box 3.3-9
Populations ]
Quantile Test 3332
Box No. Page
3.2-1: Directionsfor a One-Samplet-Test for Simple and Systematic Random Samples
with or without CompoSIting . ... ..ottt e e et e e 32-3
3.2-2: An Example of aOne-Samplet-Test for a Simple Random or Composite Sample  ........... 32-4
3.2-3: Directionsfor aOne-Samplet-Test for aStratified RandomSample ..................... 3.2-5
3.2-4: An Example of aOne-Samplet-Test for aStratified Random Sample  .................... 3.2-6
3.2-5: Directionsfor a Wilcoxon Signed Rank Test for Simple and Systematic Random Samples  .... 3.2-8
3.2-6;. An Example of the Wilcoxon Signed Rank Test foraSimpleRandom Sample  ............. 3.2-9
3.2-7: Directionsfor the Large Sample Approximation to the Wilcoxon Signed Rank Test
for Smpleand SystematicRandom Samples ........... ... . i 3.2-10
3.2-8: Directions for the One-Sample Test for Proportions for Simple and Systematic
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CHAPTER 3
STEP 3: SELECT THE STATISTICAL TEST

31 OVERVIEW AND ACTIVITIES

This chapter providesinformation that the analyst can use in selecting an appropriate statistical
hypothesis test that will be used to draw conclusions from the data. A brief review of hypothesistesting is
contained in Chapter 1, “ Developing DQOs Retrospectively.” There are two important outputs from this
step: (1) thetest itsalf, and (2) the assumptions underlying the test that determine the validity of conclusions
drawn from the test results.

This section describes the two primary activitiesin this step of the DQA Process. The remaining
sections in this chapter contain statistical tests that may be useful for analyzing environmental data. In the
one-sample tests discussed in section 3.2, data from a population are compared with an absolute criterion
such as aregulatory threshold or action level. In the two-sample tests discussed in section 3.3, datafrom a
population are compared with data from another population (for example, an area expected to be
contaminated might be compared with a background area). For each statistical test, this chapter presentsiits
purpose, assumptions, limitations, robustness, and the sequence of steps required to apply the test.

Thedirections for each hypothesis test given in this chapter are for ssmple random sampling and
randomized systematic sampling designs, except where noted otherwise. If amore complex designis used
(such as a gtratified design or a composite random sampling design) then different formulas are needed, some
of which are contained in this chapter.

311 Select Statistical Hypothesis Test

If aparticular test has been specified either in the DQO Process, the Quality Assurance Project Plan,
or by the particular program or study, the analyst should use the results of the preliminary datareview to
determineif this statistical test is legitimate for the data collected. If thetest is not legitimate, the analyst
should document why this particular statistical test should not be applied to the data and then select a
different test, possibly after consultation with the decision maker. |f aparticular test has not been specified,
the analyst should select a dtatistical test based on the data user's objectives, preliminary datareview, and
likely viable assumptions.

3.1.2 ldentify Assumptions Underlying the Statistical Test

All gatistical tests make assumptions about the data. Parametric tests assume the data have some
distributional form (e.g., the t-test assumes normal distribution), whereas nonparametric tests do not make
this assumption (e.g., the Wilcoxon test only assumes the data are symmetric but not necessarily normal).
However, both parametric and nonparametric tests may assume that the data are statistically independent or
that there are no trends in the data. While examining the data, the analyst should always list the underlying
assumptions of the statistical hypothesis test, such as distribution, dispersion, or others as applicable.

Another important feature of statistical testsistheir sensitivities (nonrobustness) to departures from
the assumptions. A gtatistical procedureis called robust if its performanceis not serioudly affected by
moderate deviations from its underlying assumptions. The analyst should note any sensitive assumptions
where relatively small deviations could jeopardize the validity of the test results.
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3.2 TESTSOF HYPOTHESESABOUT A SINGLE POPULATION

A one-sample test involves the comparison of a population parameter (e.g., a mean, percentile, or
variance) to athreshold value. Both the threshold value and the population parameter were specified during
Step 1. Review DQOs and Sampling Design. In aone-sample test, the threshold value is a fixed number that
does not vary. If the threshold value was estimated (and therefore contains variability), a one-sampletest is
not appropriate. An example of aone-sample test would be to determine if 95% of all companies emitting
sulfur dioxideinto the air are below afixed discharge level. For this example, the population parameter isa
percentage (proportion) and the threshold value is 95% (.95). Ancther example is a common Superfund
problem that involves comparing the mean contaminant concentration to arisk-based standard. In this case,
the risk-based standard (which isfixed) is the threshold value and the statistical parameter isthe true mean
contaminant concentration level of the site. However, comparing the mean concentration in an areato the
mean concentration of a reference area (background) would not be a one-sample test because the mean
concentration in the reference area would need to be estimated.

The statistical tests discussed in this section may be used to determineif 6 < 6, 0r 6 > 0,, where 6
represents either the population mean, median, a percentile, or a proportionand 0, represents the threshold
value. Section 3.2.1 discusses tests concerning the population mean, section 3.2.2 discusses tests concerning
aproportion or percentile, and section 3.2.2 discusses tests for amedian.

321 Testsfor aMean

A population mean is a measure of the center of the population distribution. It is one of the most
commonly used population parametersin statistical hypothesis testing because its distribution iswell known
for large sample sizes. The hypotheses considered in this section are:

Casel: Hy p<Cvs H, p>C;ad
Case2: Hy p>Cvs H, pu<C

where C represents a given threshold such as aregulatory level, and p denotes the (true) mean contaminant
level for the population. For example, C may represent the arsenic concentration level of concern. Then if
the mean of the population exceeds C, the data user may wish to take action.

The information required for thistest (defined in Step 1) includes the null and alternative hypotheses
(either Case 1 or Case 2); the gray region, i.e, avauep ;> Cfor Caseloravaluep ; < Cfor Case?2
representing the bound of the gray region; the false positive error rate  « at C; the false negative error rate § at
H,; and any additional limits on decision errors. It may be helpful to label any additional false positive error
limitsas o, a C,, oy a C,, €tc., and to label any additional false negative error limitsas 3, at W, B at i, €tc.
For example, consider the following decision: determine whether the mean contaminant level at awaste site
isgreater than 10 ppm. The null hypothesisisH ,: p > 10 ppm and the aternative hypothesisisH ,: p <10
ppm. A gray region has been set from 10 to 8 ppm, afase positive error rate of 5% has been set at 10 ppm,
and afalse negative error rate of 10% has been set at 8 ppm. Thus, C =10 ppm, i , =8 ppm, « = 0.05, and
f =0.1. If an additional false negative error rate was set, for example, an error rate of 1% at 4 ppm, then
B,=.01and p, =4 ppm.
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3.2.1.1 TheOne-Samplet-Test
PURPOSE

Given arandom sample of size n (or acomposite sample of size n, each composite consisting of k
aliquots), the one-sample t-test can be used to test hypotheses involving the mean () of the population from
which the sample was sdlected.

ASSUMPTIONS AND THEIR VERIFICATION

The primary assumptions required for validity of the one-sample t-test are that of arandom sample
(independence of the data values) and that the sample mean X is approximately normally distributed.
Because the sample mean and standard deviation are very sensitive to outliers, the t-test should be preceded
by atest for outliers (see section 4.4).

Approximate normality of the sample mean follows from approximate normality of the data values.
In addition, the Centra Limit Theorem states that the sample mean of arandom sample from a population
with an unknown distribution will be approximately normally distributed provided the sample sizeislarge.
This means that although the population distribution from which the data are drawn can be distinctly different
from the normal distribution, the distribution of the sample mean can still be approximately norma when the
sample sizeisrelatively large. Although preliminary tests for normality of the data can and should be done
for small sample sizes, the conclusion that the sample does not follow anormal distribution does not
automatically invalidate the t-test, which is robust to moderate violations of the assumption of normality for
large sample sizes.

LIMITATIONS AND ROBUSTNESS

Thet-test is not robust to outliers because the sample mean and standard deviation are influenced
greatly by outliers. The Wilcoxon signed rank test (see section 3.2.1.2) is more robust, but is dightly less
powerful. This meansthat the Wilcoxon signed rank test is dlightly less likely to rgect the null hypothesis
when it is false than the t-test.

Thet-test has difficulty dealing with less-than values, e.g., values below the detection limit,
compared with tests based on ranks or proportions. Tests based on a proportion above a given threshold
(section 3.2.2) are more valid in such acasg, if the threshold is above the detection limit. It isalso possible to
substitute values for below detection-level data (e.g., ¥2 the detection leve) or to adjust the statistical
guantities to account for nondetects (e.g., Cohen's Method for normally or lognormally distributed data). See
Chapter 4 for more information on dealing with data that are below the detection level.

SEQUENCE OF STEPS
Directions for a one-sample t-test for asimple, systematic, and composite random samples are given

in Box 3.2-1 and an exampleisgivenin Box 3.2-2. Directionsfor a one-samplet-test for a stratified random
sample are given in Box 3.2-3 and an exampleisgiven in Box 3.2-4.
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Box 3.2-1: Directions for a One-Sample t-Test
for Simple and Systematic Random Samples
with or without Compositing

Let X, X,, . . ., X, represent the n data points. These could be either n individual samples or n
composite samples consisting of k aliquots each. These are the steps for a one-sample t-test for Case 1
(Hy: M < C); modifications for Case 2 (H: p > C) are given in braces { }.

STEP 1. Calculate the sample mean,x (section 2.2.2), and the standard deviation, s (section 2.2.3).

STEP 2: Use Table A-1 of Appendix A to find the critical value t, such that 100(1-@)% of the t
distribution with n - 1 degrees of freedom is belowt,. For example, ifa = 0.05 and n = 16,
thenn-1=15and t_, = 1.753.

STEP 3: Calculate the sample valie t = ()(*C) / (slyn) .
STEP 4. Compare twith t_.

1) Ift> 1t {t <-4}, the null hypothesis may be rejected. Go to Step 6.

2) Ift st {t + -t o}, there is not enough evidence to reject the null hypothesis and the false
negative error rate should be verified. Go to Step 5.

STEP 5. As the null hypothesis (H) was not rejected, calculate either the power of the test or the
sample size necessary to achieve the false positive and false negative error rates. To
calculate the power, assume that the true values for the mean and standard deviation are
those obtained in the sample and use a software package like the Decision Error Feasibility
Trial (DEFT) software (EPA G-4D, 1994) to generate the power curve of the test.

If only one false negative error rate ) has been specified (at W), it is possible to calculate the
sample size which achieves the DQOs, assuming the true mean and standard deviation are
equal to the values estimated from the sample, instead of calculating the power of the test. To

52(21—u+21—p)2

2
(IJfC)
standard normal distribution (Table A-1 of Appendix A). Round m up to the next integer. If

m < n, the false negative error rate has been satisfied. If m > n, the false negative error rate
has not been satisfied.

do this, calculae m = + (0.5)212_Oc where z, is the p" percentile of the

STEP 6: The results of the test may be:

1) the null hypothesis was rejected and it seems that the true mean is greater than C {less
than C};

2) the null hypothesis was not rejected and the false negative error rate was satisfied and it
seems that the true mean is less than C {greater than C}; or

3) the null hypothesis was not rejected and the false negative error rate was not satisfied and
it seems that the true mean is greater than C {less than C} but conclusions are uncertain since
the sample size was too small.

Report the results of the test, the sample size, sample mean, standard deviation, t and_{.
Note: The calculations for the t-test are the same for both simple random or composite random

sampling. The use of compositing will usually result in a smaller value of “s” than simple random
sampling.
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STEP 1:

STEP 2:

STEP 3:

STEP 4:

STEP 5:

STEP 6:

Consider the following 9 random (or composite samples each of k aliquots) data points: 82.39 ppm, 103.46
ppm, 104.93 ppm, 105.52 ppm, 98.37 ppm, 113.23 ppm, 86.62 ppm, 91.72 ppm, and 108.21 ppm. This
data will be used to test the hypothesis: H,: p < 95 ppmvs. H,: > 95 ppm. The decision maker has
specified a 5% false positive decision error limit () at 95 ppm (C), and a 20% false negative decision error

limit (B) at 105 ppm ().

Box 3.2-2: An Example of a One-Sample t-Test
for a Simple Random or Composite Sample

In Boxes 2.3-3 and 2.3-5 of Chapter 2, it was found that

X =9938 ppm and s = 10.41 ppm.

Using Table A-1 of Appendix A, the critical value of the t distribution with 8 degrees of freedom is
toos = 1.86.

[ _X-C_938-9%5 _, .

siyn 10.41/4/9

Because 1.26 » 1.86, there is not enough evidence to reject the null hypothesis and the false
negative error rate should be verified.

Because there is only one false negative error rate, it is possible to use the sample size formula to
determine if the error rate has been satisfied. Therefore,

_ Szt )

o 0522,
1

m

2 2
_ 104171645 + 0842)° | 5)(1.645)2 = 8.049, ie., 9

(95 - 105)2

Notice that it is customary to round upwards when computing a sample size. Since m=n, the
false negative error rate has been satisfied.

The results of the hypothesis test were that the null hypothesis was not rejected but the false
negative error rate was satisfied. Therefore, it seems that the true mean is less than 95 ppm.

EPA QA/G-9

32-4 QA96



Box 3.2-3: Directions for a One-Sample t-Test
for a Stratified Random Sample

Leth=1, 2,3, ..., Lrepresentthe L strata and n, represent the sample size of stratum h. These steps are for
a one-sample t-test for Case 1 (H,: p < C); modifications for Case 2 (H,: | > C) are given in braces { }.

STEP 1: Calculate the stratum weights (W,) by calculating the proportion of the volume in

stratum h, Wh = where V, is the surface area of stratum h multiplied by the depth of

L
> Vi
h=1
sampling in stratum h.

DX

i=1

STEP 2: For each stratum, calculate the sample stratum mean Xh = and the sample stratum

n, o )Z 2
standard error Sh2 = Z M

i=1 nh -1
vl = vl 2 - 2$112
STEP 3: Calculate overall mean Xgp = ZWhXh, and variance Sgr = ZW —_
h=1 h=1 nh
2y\2
(Ssr)
STEP 4:  Calculate the degrees of freedom (dof): dof = Yoy
= Ws,

R

Use Table A-1 of Appendix A to find the critical value t_, so that 100(1-a)% of the t distribution
with the above degrees of freedom (rounded to the next highest integer) is below t .

X - C
JSsr

STEP 6: Compare tto t,,. Ift>t., {t<-t_}, the null hypothesis may be rejected. Go to Step 8. Iftst,,
{t « -t..}, there is not enough evidence to reject the null hypothesis and the false negative error
rate should be verified. Go to Step 7.

STEP 5: Calculate the sample value: t =

STEP 7: If the null hypothesis was not rejected, calculate either the power of the test or the sample size
necessary to achieve the false positive and false negative error rates (see Step 5, Box 3.2-1).

STEP 8: The results of the test may be:

1) the null hypothesis was rejected so it seems that the true mean is less than C {greater
than C};

2) the null hypothesis was not rejected and the false negative error rate was satisfied and it
seems that the true mean is greater than C {less than C}; or

3) the null hypothesis was not rejected and the false negative error rate was not satisfied
and it seems that the true mean is greater than C {less than C} but conclusions are
uncertain since the sample size was too small.

Report the results of the test, as well as the sample size, sample mean, and sample standard
deviation for each stratum, the estimated t, the dof, and t_,.
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Box 3.2-4: An Example of a One-Sample t-Test
for a Stratified Random Sample

Consider a stratified sample consisting of two strata where stratum 1 comprises 10% of the total site surface
area and stratum 2 comprises the other 90%, and 40 samples were collected from stratum 1, and 60 samples
were collected from stratum 2. For stratum 1, the sample mean is 23 ppm and the sample standard deviation
is 18.2 ppm. For stratum 2, the sample mean is 35 ppm, and the sample standard deviation is 20.5 ppm.
This information will be used to test the null hypothesis that the overall site mean is greater than or equal to 40
ppm, i.e., Hy;: |1 > 40 ppm (Case 2). The decision maker has specified a 1% false positive decision limit ¢x) at
40 ppm and a 20% false negative decision error limit (3) at 35 ppm (,).

STEP 1: W, =10/100 = 0.10, W, = 90/100 = 0.9.

STEP 2: From above, X, = 23 ppm, X, = 35 ppm, s, = 18.2, and s, = 20.5. This information was
developed using the equations in step 2 of Box 3.2-3.

STEP 3: The estimated overall mean concentration is:

_ L _
Xor = 2 Wiy = WX, + WX, = (1)(23) + (9)(35) = 33.8 ppm.

and the estimated overall variance is:

1°(18.2?2 . (.9)*(20.5)
W _ ¢ = 5.76
s Z n, 40 60
STEP 4: The approximate degrees of freedom (dof) is:

22 5

dof = (57 = (5.76) = 60.8,i.e., 61
XL: W's? (1)*(18.2* . (9)*(205)*
2 2
b1 n(n, - 1) (40)~39 (60)259

Note how the degrees of freedom has been rounded up to a whole number. Using Table A-1 of
Appendix A, the critical value t,_, of the t distribution with 61 dof is approximately 2.39.

X - C _
STEP 5.  Calculate the sample value t = Sl _ 338 — 40 _ -2.58

STEP 6: Because -2.58 < -2.39 the null hypothesis may be rejected.

STEP 7: Because the null hypothesis was rejected, it is concluded that the mean is probably less than 40
ppm. In this example there is no need to calculate the false negative rate as the null hypothesis
was rejected and so the chance of making a false negative error is zero by definition.
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3.2.1.2 TheWilcoxon Signed Rank (One-Sample) Test for the Mean
PURPOSE

Given arandom sample of size n (or composite sample size n, each composite consisting of k
aliquots), the Wilcoxon signed rank test can be used to test hypotheses regarding the population mean or
median of the population from which the sample was sdlected.

ASSUMPTIONS AND THEIR VERIFICATION

The Wilcoxon signed rank test assumes that the data congtitute a random sample from a symmetric
continuous population. (Symmetric means that the underlying population frequency curveis symmetric about
its mean/median.) Symmetry is aless stringent assumption than normality since al normal digtributions are
symmetric, but some symmetric distributions are not normal. The mean and median are equal for a
symmetric distribution, so the null hypothesis can be stated in terms of either parameter. Tests for symmetry
can be devised which are based on the chi-squared distribution, or atest for normality may be used. If the
data are not symmetric, it may be possible to transform the data so that this assumption is satisfied. See
Chapter 4 for moreinformation on transformations and tests for symmetry.

LIMITATIONS AND ROBUSTNESS

Although symmetry is aweaker assumption than normality, it is nonethel ess a strong assumption. If
the data are not approximately symmetric, thistest should not be used. For large sample sizes (n > 50), the
t-test is more robust to violations of its assumptions than the Wilcoxon signed rank test. For small sample
sizes, if the data are not approximately symmetric and are not normally distributed, this guidance
recommends consulting a statistician before selecting a statistical test or changing the population parameter
to the median and applying a different statistical test (section 3.2.3).

The Wilcoxon signed rank test may produce mideading results if many data values are the same.
When values are the same, their relative ranks are the same, and this has the effect of diluting the statistical
power of the Wilcoxon test. Box 3.2-5 demonstrates the correct method used to break tied ranks. If possible,
results should be recorded with sufficient accuracy so that alarge number of equa values do not occur.
Estimated concentrations should be reported for data bel ow the detection limit, even if these estimates are
negative, astheir relative magnitude to the rest of the dataiis of importance.

SEQUENCE OF STEPS
Directions for the Wilcoxon signed rank test for a smple random sample and a systematic simple
random sample are given in Box 3.2-5 and an exampleis givenin Box 3.2-6 for samples sizes smaller than

20. For sample sizes greater than 20, the large sample approximation to the Wilcoxon Signed Rank Test
should be used. Directionsfor thistest are givenin Box 3.2-7.
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Box 3.2-5: Directions for the Wilcoxon Signed Rank Test
for Simple and Systematic Random Samples

Let X, X,, . . ., X, represent the n data points. The following describes the steps for applying the
Wilcoxon signed rank test for a sample size (n) less than 20 for Case 1 (51 p < C); modifications for
Case 2 (H,: p > C) are given in braces {}. If the sample size is greater than or equal to 20, use Box 3.2-
7.

STEP 1. If possible, assign values to any measurements below the detection limit. If this is not possible,
assign the value “Detection Limit divided by 2" to each value. Then subtract each observation
X; from C to obtain the deviations ¢= C - X.. If any of the deviations are zero delete them and
correspondingly reduce the sample size n.

STEP 2: Assign ranks from 1 to n based on ordering the absolute deviations |{i(i.e., magnitude of
differences ignoring the sign) from smallest to largest. The rank 1 is assigned to the smallest
value, the rank 2 to the second smallest value, and so forth. If there are ties, assign the
average of the ranks which would otherwise have been assigned to the tied observations.

STEP 3: Assign the sign for each observation to create the signed rank. The sign is positive if the
deviation d is positive; the sign is negative if the deviation dis negative.

STEP 4: Calculate the sum R of the ranks with a positive sign.
STEP 5. Use Table A-6 of Appendix A to find the critical value .
If R <w,, {R >n(n+1)/2 - w}, the null hypothesis may be rejected; proceed to Step 7.

Otherwise, there is not enough evidence to reject the null hypothesis, and the false negative
error rate will need to be verified; proceed to Step 6.

STEP 6: If the null hypothesis (H)) was not rejected, calculate either the power of the test or the sample
size necessary to achieve the false positive and false negative error rates using a software
package like the DEFT software (EPA G-4D, 1994). For large sample sizes, calculate,

2 2
SNz, _ +Z, o)
m - 1“—125 + (0.5)z2,
(IJfC)
where z, is the p" percentile of the standard normal distribution (Table A-1 of Appendix A). If
1.16m < n, the false negative error rate has been satisfied.

STEP 7: The results of the test may be:

1) the null hypothesis was rejected and it seems that the true mean is greater than C {less
than C};

2) the null hypothesis was not rejected and the false negative error rate was satisfied and it
seems that the true mean is less than C {greater than C}; or

3) the null hypothesis was not rejected and the false negative error rate was not satisfied and
it seems that the true mean is greater than C {less than C} but conclusions are uncertain since
the sample size was too small.

Report the results of the test, the sample size, R, and wy{n(n+1)/2 - w,}.
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to test the

error limit

STEP 1

STEP 2:

STEP 3

STEP 4:

STEP 5:

STEP 7:

Box 3.2-6: An Example of the Wilcoxon Signed Rank Test
for a Simple Random Sample

Consider the following 10 data points: 974 ppb, 1044 ppb, 1093 ppb, 897 ppb, 879 ppb, 1161 ppb, 839
ppb, 824 ppb, 796 ppb, and one observation below the detection limit of 750 ppb. This data will be used

hypothesis: H: p > 1000 ppb vs. H,: 1 <1000 ppb (Case 2). The decision maker has

specified a 10% false positive decision error limitg) at 1000 ppb (C), and a 20% false negative decision

(B) at 900 ppb ().

Assign the value 375 ppb (750 divided by 2) to the data point below the detection limit.
Subtract C (1000) from each of the n observations Xto obtain the deviations d = 1000 - X.
This is shown in row 2 of the table below.

X 974 1044 1093 897 879 1161 839 824 796 375
d; 26 -44 -93 103 121 -161 161 176 204 625
[di| 26 44 93 103 121 161 161 176 204 625
rank 1 2 3 4 5 6.5 6.5 8 9 10
s-rank 1 -2 -3 4 5 -6.5 6.5 8 9 10

Assign ranks from 1 to n based on ordering the absolute deviations |(magnitude ignoring
any negative sign) from smallest to largest. The absolute deviations are listed in row 3 of the
table above. Note that the data have been sorted (rearranged) for clarity so that the absolute
deviations are ordered from smallest to largest.

The rank 1 is assigned to the smallest value, the rank 2 to the second smallest value, and so
forth. Observations 6 and 7 are ties, therefore, the average (6+7)/2 = 6.5 will be assigned to
the two observations. The ranks are shown in row 4.

Assign the sign for each observation to create the signed rank. The sign is positive if the
deviation d is positive; the sign is negative if the deviation dis negative. The signed rank is
shown in row 5.

R=1+4+5+65+8+9+10=43.5.

Table A-6 of Appendix A was used to find the critical value wwhere o = 0.10. For this
example, wy ;o = 15. Since 43.5 > (10x11)/2 - 15 = 40, the null hypothesis may be rejected.

The null hypothesis was rejected with a 10% significance level using the Wilcoxon signed rank
test. Therefore, it would seem that the true mean is below 1000 ppb.
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Box 3.2-7: Directions for the Large Sample Approximation to the Wilcoxon Signed Rank Test
for Simple and Systematic Random Samples

Let X, X,, . . ., X, represent the n data points where n is greater than or equal to 20. The following
describes the steps for applying the large sample approximation for the Wilcoxon signed rank test for
Case 1 (H,: p < C); modifications for Case 2 (H: u > C) are given in braces {}.

STEP 1. If possible, assign values to any measurements below the detection limit. If this is not
possible, assign the value “Detection Limit divided by 2” to each value. Then subtract each
observation X from C to obtain the deviations d= C - X. If any of the deviations are zero
delete them and correspondingly reduce the sample size n.

STEP 2: Assign ranks from 1 to n based on ordering the absolute deviations |{i(i.e., magnitude of
differences ignoring the sign) from smallest to largest. The rank 1 is assigned to the smallest
value, the rank 2 to the second smallest value, and so forth. If there are ties, assign the
average of the ranks which would otherwise have been assigned to the tied observations.

STEP 3: Assign the sign for each observation to create the signed rank. The sign is positive if the
deviation d is positive; the sign is negative if the deviation dis negative.

STEP 4: Calculate the sum R of the ranks with a positive sign.

nin + 1)
4

STEP 5. Calculate W = + xp\/n(n + 1)(2n + 1)/24 wherep=1-a{p=a}and z,is

the p" percentile of the standard normal distribution (Table A-1 of Appendix A).
STEP 6. If R <w {R > w}, the null hypothesis may be rejected. Go to Step 8.

Otherwise, there is not enough evidence to reject the null hypothesis, and the false negative
error rate will need to be verified. Go to Step 7.

STEP 7: If the null hypothesis (H)) was not rejected, calculate either the power of the test or the sample
size necessary to achieve the false positive and false negative error rates using a software
package like the DEFT software (EPA G-4D, 1994). For large sample sizes, calculate,

s%z, +z. )3
m = RCENCE 12“‘) + (0.5)z2,
(IJfC)

where z, is the p" percentile of the standard normal distribution (Table A-1 of Appendix A). If
1.16m < n, the false negative error rate has been satisfied.

STEP 8: The results of the test may be:
1) the null hypothesis was rejected and it seems that the true mean is greater {less} than C;

2) the null hypothesis was not rejected and the false negative error rate was satisfied and it
seems that the true mean is less than C {greater than C}; or

3) the null hypothesis was not rejected and the false negative error rate was not satisfied and
it seems that the true mean is greater than C {less than C} but conclusions are uncertain since
the sample size was too small.

Report the results of the test, the sample size, R, and w.
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3.22 Testsfor aProportion or Percentile

This section considers hypotheses concerning population proportions and percentiles. A population
proportion is the ratio of the number of elements of a population that has some specific characteritic to the
total number of elements. A population percentile represents the percentage of elements of a population
having values less than some threshold C. Thus, if x isthe 95 ™ percentile of a population, 95% of the
elements of the population have values less than C and 5% of the population have values greater than C.

This section of the guidance coversthe following hypothesis: Case1: H ,; P< P, vs. H,: P>P,
andCase2: H, P> P, vs. H,: P<P,wherePisaproportion of the population, and P , represents agiven
proportion (0 < P, < 1). Equivalent hypotheses written in terms of percentilesareH : the 100P™" percentileis
Cor larger for Case 1, and H ,: the 100P™ percentileis C or smaller for Case 2. For example, consider the
decision to determine whether the 95 ™ percentile of a container of wasteis lessthan 1 mg/L cadmium. The
null hypothesisin thiscaseisH ,: the 95" percentile of cadmium islessthan 1 mg/L. Now, instead of
considering the population to consist of differing levels of cadmium, consider the population to consist of a
binary variable that is'1' if the cadmium level isabove 1 mg/L or is'0'"if thelevel isbdow 1 mg/L. Inthis
case, the hypothesis may be changed to atest for aproportion so that the null hypothesis becomes
Hy: P <.95where P represents the proportion of 1's (cadmium levels above 1 mg/L) in the container of
waste. Thus, any hypothesis about the proportion of the site below a threshold can be converted to an
equivaent hypothesis about percentiles. Therefore, only hypotheses about the proportion of the site below a
threshold will be discussed in this section. The information required for thistest includes the null and
aternative hypotheses, the gray region, the false positive error rate  « at P, the false negative error rate § at
P,, and any additional limits on decision errors. It may be helpful to label any additional false positive error
limitsas «, a P,,, «; a P,3, €tc., and any additional false negative error limitsas 3, at Pg,, B at Pgs, tc.

3.2.2.1 TheOne-Sample Proportion Test

PURPOSE

Given arandom sample of size n, the one-sample proportion test may be used to test hypotheses
regarding a population proportion or population percentile for a distribution from which the data were drawn.
Notethat for P=.5, thistest isalso called the Sign test.

ASSUMPTIONS AND THEIR VERIFICATION

The only assumption required for the one-sample proportion test is the assumption of arandom
sample. To verify this assumption, review the procedures and documentation used to select the sampling
points and ascertain that proper randomization has been used.

LIMITATIONS AND ROBUSTNESS

Since the only assumption isthat of arandom sample, the procedures are valid for any underlying
distributional shape. The procedures are also robust to outliers, aslong as they do not represent data errors.

SEQUENCE OF STEPS

Directions for the one-sample test for proportions for a simple random sample and a systematic
simple random sample are given in Box 3.2-8, an exampleisgivenin Box 3.2-9.
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Box 3.2-8: Directions for the One-Sample Test for Proportions
for Simple and Systematic Random Samples

This box describes the steps for applying the one-sample test for proportions for Case 1 (H: P < Py);
modifications for Case 2 (H,: P > P,) are given in braces { }.

STEP 1: Given a random sample X;, X,, . . ., X,, of measurements from the population, let p (small p) denote
the proportion of X's that do not exceed C, i.e., p is the number (k) of sample points that are less
than or equal to C, divided by the sample size n.

STEP 2: Compute np, and n(1-p). If both np and n(1-p) are greater than or equal to 5, use Steps 3 and 4.
Otherwise, consult a statistician as analysis may be complex.

p-.5n - PR, p +.5n - PR,
STEP 3: Calculate Z = ——— forCaselor Z = ———— for Case 2.

JP Py JP Py

STEP 4: Use Table A-1 of Appendix A to find the critical value z_, such that 100(1-a)% of the normal
distribution is below z, .. For example, if @ = 0.05 then z, , = 1.645.

Ifz> 2z, {z <-z,,}, the null hypothesis may be rejected. Go to Step 6.

Ifz » z,,{z « -z,.,}, there is not enough evidence to reject the null hypothesis. Therefore, the false
negative error rate will need to be verified. Go to Step 5.

STEP 5: To calculate the power of the test, assume that the true values for the mean and standard deviation
are those obtained in the sample and use a statistical software package like the DEFT software
(EPA G-4D, 1994) or the DataQUEST software (EPA G-9D, 1996) to generate the power curve of
the test.

If only one false negative error rate (8) has been specified (at P,), it is possible to calculate the
sample size which achieves the DQOs. To do this, calculate

el PR 2P|
[

P, - P,

If m < n, the false negative error rate has been satisfied. Otherwise, the false negative error rate has
not been satisfied.

STEP 6: The results of the test may be:
1) the null hypothesis was rejected and it seems that the proportion is greater than {less than} R;

2) the null hypothesis was not rejected, the false negative error rate was satisfied, and it seems that
proportion is less than {greater than} P,; or

3) the null hypothesis was not rejected, the false negative error rate was not satisfied, and it would
seem the proportion was less than {greater than} P,, but the conclusions are uncertain because the
sample size was too small.
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Box 3.2-9: An Example of the One-Sample Test for Proportions
for a Simple Random Sample

Consider 85 samples of which 11 samples have concentrations greater than the clean-up standard. This
data will be used to test the null hypothesis H;: P > .20 vs. H,: P <.20 (Case 2). The decision maker has
specified a 5% false positive rate (@) for P, = .2, and a false negative rate (3) of 20% for P, = 0.15.

STEP 1: From the data, the observed proportion (p) is p = 11/85 =.1294

STEP 2: np = (85)(.1294) = 11 and n(1-p) = (85)(1-.1294) = 74. Since both np and n(1-p) are greater
than or equal to 5, Steps 3 and 4 will be used.

STEP 3: Because H,: P > .20, Case 2 formulas will be used.

+.5n-P _
;- p o _ 1294 + 5/85 - 2 _ _1.492

JP,@-P,)/n J2@-278%

STEP 4: Using Table A-1 of Appendix A, it was found that z_, =z, = 1.645. Because z « -z, (i.e.,
-1.492 « -1.645), the null hypothesis is not rejected so Step 5 will need to be completed.

STEP 5: To determine whether the test was powerful enough, the sample size necessary to achieve the
DQOs was calculated as follows:

2
m - | L6 2(1-2)+ 1.04/T5(T-15)| _ 40514

A5 - 2

So 423 samples are required, many more than were actually taken.

STEP 6: The null hypothesis was not rejected and the false negative error rate was not satisfied.
Therefore, it would seem the proportion is greater than 0.2, but this conclusion is uncertain
because the sample size is too small.

3.23 Testsfor aMedian

A population median (1) is another measure of the center of the population distribution. This
population parameter isless sensitive to extreme values and nondetects than the sample mean. Therefore,
this parameter is sometimes used instead of the mean when the data contain alarge number of nondetects or
extreme values. The hypotheses considered in this section are:

Cael: Hy n<Cvs H, p>C; and
Case2 Hy p>Cvs H, p<C
where C represents a given threshold such as aregulatory level.

It isworth noting that the median isthe 50 ™" percentile, so the methods described in section 3.2.2 may
be used to test hypotheses concerning the median by letting P , = 0.50. In this case, the one-sampletest for
proportionsis also called the Sign Test for amedian. The Wilcoxon signed rank test (section 3.2.1.2) can
also be applied to amedian in the same manner asit is applied to amean. In addition, thistest ismore

powerful than the Sign Test for symmetric distributions. Therefore, the Wilcoxon signed rank test isthe
preferred test for the median.
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33 TESTSFOR COMPARING TWO POPULATIONS

A two-sample test involves the comparison of two populations or a*“before and after” comparison.
In environmental applications, the two populations to be compared may be a potentially contaminated area
with a background area or concentration levels from an upgradient and a downgradient well. The comparison
of the two populations may be based on a statistical parameter that characterizes the relative location (e.g., a
mean or median), or it may be based on a distribution-free comparison of the two population distributions.
Tests that do not assume an underlying distributions (e.g., normal or lognormal) are called distribution-free or
nonparametric tests. These tests are often more useful for comparing two populations than those that assume
a specific distribution because they make less stringent assumptions. Section 3.3.1 coverstestsfor
differences in the means of two populations. Section 3.3.2 coverstests for differences in the proportion or
percentiles of two populations. Section 3.3.3 describes distribution-free comparisons of two populations.
Section 3.3.4 describestests for comparing two medians.

Often, atwo-sample test involves the comparison of the difference of two population parametersto a
threshold value. For environmental applications, the threshold value is often zero, representing the case
where the data are used to determine which of the two population parametersis greater than the other. For
example, concentration levels from a Superfund site may be compared to a background site. Then, if the
Superfund site levels exceed the background levels, the site requires further investigation. A two-sample test
may also be used to compare readings from two instruments or two separate populations of people.

If the exact same sampling locations are used for both populations, then the two samples are not
independent. This case should be converted to a one-sample problem by applying the methods described in
section 3.2 to the differences between the two populations at the same location. For example, one could
compare contaminant levels from several wells after treatment to contaminant levels from the same wells
before treatment. The methods described in section 3.2 would then be applied to the differences between the
before and after trestment contaminant levels for each well.

331 Comparing Two Means

Let p, represent the mean of population 1 and 1 , represent the mean of population 2. The
hypotheses considered in this section are;

Casel: Hy M-, <0y VS Hul g - 1, > 90, and
Case2: Hy Hy-Hy> 0y VS Hpl [y - 1y <O,

An example of atwo-sampletest for population means is comparing the mean contaminant level a a
remediated Superfund site to a background site; in thiscase, 6, would be zero. Another example is a Record
of Decision for a Superfund site which specifies that the remediation technique must reduce the mean
contaminant level by 50 ppm each year. Here, each year would be considered a separate populationand  §,
would be 50 ppm.

The information required for these tests includes the null and alternative hypotheses (either Case 1 or
Case 2); the gray region (i.e.,, avaue 0, > 9§, for Case 1 or avaue 9, < §, for Case 2 representing the bound
of the gray region); the false positive error rate o at d,; the false negative error rate f at d,; and any additiona
limits on decision errors. It may be helpful to label additional false positive error limitsas o, a ,,, &5 at 0,5,
etc., and to label additional false negative error limitsas B, at d,, B5 at o3, EtC.
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3.3.1.1 Student'sTwo-Samplet-Test (Equal Variances)
PURPOSE

Student's two-sampl e t-test can be used to compare two population means based on the independent
random samples X ;, X,, . .., X, from the first population,and Y ,, Y, ..., Y, from the second population.
Thistest assumes the variahilities (as expressed by the variance) of the two populations are approximately
equa. If thetwo variances are not equal (atest is described in section 4.5), use Satterthwaite'st test (section
3.3.1.2).

ASSUMPTIONS AND THEIR VERIFICATION

The principa assumption required for the two-sample t-test isthat arandom sample of sizem (X,
X,, ..., X)) isdrawn from population 1, and an independent random sampleof szen(Y ,,Y,, ..., Y, )is
drawn from population 2. Vdlidity of the random sampling and independence assumptions should be
confirmed by reviewing the procedures used to select the sampling points.

The second assumption required for the two-sample t-tests are that the sasmple means X (sample 1)
and Y (sample 2) are approximately normally distributed. If both m and n are large, one may make this
assumption without further verification. For small sample sizes, approximate normality of the sample means
can be checked by testing the normality of each of the two samples.

LIMITATIONS AND ROBUSTNESS
The two-sample t-test with equal variancesis robust to violations of the assumptions of normality
and equality of variances. However, if the investigator has tested and rejected normality or equality of

variances, then nonparametric procedures may be applied. Thet-test is not robust to outliers because sample
means and standard deviations are sensitive to outliers.

SEQUENCE OF STEPS

Directions for the two-sample t-test for a simple random sample and a systematic simple random
sample are givenin Box 3.3-1 and an example in Box 3.3-2.

3.3.1.2 Satterthwaite's Two-Samplet-Test (Unequal Variances)
Satterthwaite's t-test should be used to compare two popul ation means when the variances of the two
populations are not equal. |t requires the same assumptions as the two-sample t-test (section 3.3.1.1) except

the assumption of equal variances.

Directions for Satterthwaite'st-test for a simple random sample and a systematic simple random
sample are given in Box 3.3-3 and an example in Box 3.3-4.
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Box 3.3-1: Directions for the Student's Two-Sample t-Test (Equal Variances)
for Simple and Systematic Random Samples

This describes the steps for applying the two-sample t-tests for differences between the population means
when the two population variances are equal for Case 1 (H,: Y, - 1, < O,). Modifications for Case 2
(Ho: My - M, > ) are given in parentheses { }.

STEP 1: Calculate the sample mean X and the sample variance s,2 for sample 1 and compute the sample
mean Y and the sample variance s,2 for sample 2.

STEP 2:  Use section 4.5 to determine if the variances of the two populations are equal. If the variances of
the two populations are not equal, use Satterthwaite's t test (section 3.3.1.2). Otherwise,
compute the pooled standard deviation

(M-)s; + (n-1)s;
(m-1) + (n-1)

X-Y-8,
sE\/1/n+1/m.

Use Table A-1 of Appendix A to find the critical value t_, such that 100(1-)% of the t-distribution
with (m+n-2) degrees of freedom is below t, .

STEP 3: Calculate t =

Ift>t, {t<-t.}, the null hypothesis may be rejected. Go to Step 5.

Ift»t., {t « -t .}, there is not enough evidence to reject the null hypothesis. Therefore, the false
negative error rate will need to be verified. Go to Step 4.

STEP 4:  To calculate the power of the test, assume that the true values for the mean and standard
deviation are those obtained in the sample and use a statistical software package like the DEFT
software (EPA G-4D, 1994) or the DataQUEST software (EPA G-9D, 1996) to generate the
power curve of the two-sample t-test. If only one false negative error rate §8) has been specified
(at d,), itis possible to calculate the sample size which achieves the DQOSs, assuming the true
mean and standard deviation are equal to the values estimated from the sample, instead of
calculating the power of the test. Calculate

25%(z,_,+Z, 5)?
—gl-_f%;lz-ﬁ) - (025)22,
1

Ifm" < mand n’ < n, the false negative error rate has been satisfied. Otherwise, the false negative
error rate has not been satisfied.

m*=n*=

STEP 5:  The results of the test could be:
1) the null hypothesis was rejected, and it seems | - W, > O, {H; - U, < Op};

2) the null hypothesis was not rejected, the false negative error rate was satisfied, and it seems
M- Hp < 8o {M; - K > Og}; OF

3) the null hypothesis was not rejected, the false negative error rate was not satisfied, and it
seems |, - W, < Oy {M, - K, > O}, but this conclusion is uncertain because the sample size was
too small.
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Box 3.3-2: An Example of a Student's Two-Sample t-Test (Equal Variances)
for Simple and Systematic Random Samples

At a hazardous waste site, area 1 (cleaned using an in-situ methodology) was compared with a similar (but
relatively uncontaminated) reference area, area 2. If the in-situ methodology worked, then the two sites
should be approximately equal in average contaminant levels. If the methodology did not work, then area 1
should have a higher average than the reference area. Seven random samples were taken from area 1, and
eight were taken from area 2. Because the contaminant concentrations in the two areas are supposedly
equal, the null hypothesis is H,: U, - 14, < 0 (Case 1). The false positive error rate was set at 5% and the false
negative error rate was set at 20% (B) if the difference between the areas is 2.5 ppb.

STEP 1: Sample Mean Sample Variance
Area 1 7.8 ppm 2.1 ppm?
Area 2 6.6 ppm 2.2 ppm?
STEP 2: Methods described in section 4.5 were used to determine that the variances were essentially

equal. Therefore,
s - (7-D21 + B-1)22 _ 4 4ore
(7-1)+ (8-1)

STEP 3: t = 78-66-0 _ 1.5798

1.4676/1/7+1/8

Table A-1 of Appendix A was used to find that the critical value t s with (7 + 8 - 2) = 13 degrees
of freedom is 1.771.

Because't » t, (i.e., 1.5798 » 1.771), there is not enough evidence to reject the null hypothesis.
The false negative error rate will need to be verified.

STEP 4: Assuming the true values for the mean and standard deviation are those obtained in the sample:

2(1.4676%)(1.645 +0.842)>
(2.5-0)

Because m" < m (7) and n" < n (8), the false negative error rate has been satisfied.

m*=n* = + (0.25)1.645° =4.938,ie.,5.

STEP 5: The null hypothesis was not rejected and the false negative error rate was satisfied. Therefore, it
seems there is no difference between the two areas and that the in-situ methodology worked as
expected.
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Box 3.3-3: Directions for Satterthwaite's t-Test (Unequal Variances)
for Simple and Systematic Random Samples

This describes the steps for applying the two-sample t-test for differences between the population means for
Case 1 (Hy: M, - M, < Op). Modifications for Case 2 (H,: W, - W, > O,) are given in parentheses { }.

STEP 1: Calculate the sample mean X and the sample variance s,2 for sample 1 and compute the sample
mean Y and the sample variance s,2 for sample 2.

STEP 2: Using section 4.5, test whether the variances of the two populations are equal. If the variances
2 2
. _ S Sy
of the two populations are not equal, compute: S = | — + —
m n

If the variances of the two populations appear approximately equal, use Student's two-sample t-
test (section 3.3.1.1, Box 3.3-1).

X-Y-8,
Se

Use Table A-1 of Appendix A to find the critical value t_, such that 100(1-)% of the t-distribution
with f degrees of freedom is below t,_,, where

STEP 3: Calculate t =

2
S, S
—_ et —

m n
4 4

Sy sy

m?(m-1) ' n?(n-1)

(Round f down to the nearest integer.)
Ift>t, {t<-t.}, the null hypothesis may be rejected. Go to Step 5.

Ift » ., {t « -t o}, there is not enough evidence to reject the null hypothesis and therefore, the
false negative error rate will need to be verified. Go to Step 4.

STEP 4: If the null hypothesis (H,) was not rejected, calculate either the power of the test or the sample
size necessary to achieve the false positive and false negative error rates. To calculate the
power of the test, assume that the true values for the mean and standard deviation are those
obtained in the sample and use a statistical software package to generate the power curve of the
two-sample t-test. A simple method to check on statistical power does not exist.

STEP 5: The results of the test could be:
1) the null hypothesis was rejected, and it seems | - W, > O, {H; - U, < Op};

2) the null hypothesis was not rejected, the false negative error rate was satisfied, and it seems
My - Ha < Qg {Hy - K = O; OF

3) the null hypothesis was not rejected, the false negative error rate was not satisfied, and it
seems |, - W, < Oy {M, - K, > O}, but this conclusion is uncertain because the sample size was
too small.
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Box 3.3-4: An Example of Satterthwaite's t-Test (Unequal Variances)
for Simple and Systematic Random Samples

At a hazardous waste site, area 1 (cleaned using an in-situ methodology) was compared with a similar (but
relatively uncontaminated) reference area, area 2. If the in-situ methodology worked, then the two sites
should be approximately equal in average contaminant levels. If the methodology did not work, then area 1
should have a higher average than the reference area. Seven random samples were taken from area 1, and
eight were taken from area 2. Because the contaminant concentrations in the two areas are supposedly
equal, the null hypothesis is H,: Y, - 14, < 0 (Case 1). The false positive error rate was set at 5% and the false
negative error rate was set at 20% (B) if the difference between the areas is 2.5 ppb.

STEP 1: Sample Mean Sample Variance
Area 1 9.2 ppm 1.3 ppm?
Area 2 6.1 ppm 5.7 ppm?
STEP 2: Using section 4.5, it was determined that the variances of the two populations were not equal,

and therefore using Satterthwaite's method is appropriate:

S = V137 + 5758 = 0.9477

STEP 3: t = 92-61-0 =3.271

0.9477

Table A-1 was used with f degrees of freedom, where

[1.3/7 + 5.7/8]?
13 | 57
7X7-1) 8(8-1)

(recall that f is rounded down to the nearest integer), to find t., = 1.812.

f= = 10.307 (i.e., 10 degrees of freedom)

Because t > t; 45 (3.271 > 1.812), the null hypothesis may be rejected.

STEP 5: Because the null hypothesis was rejected, it would appear there is a difference between the two
areas (area 1 being more contaminated than area 2, the reference area) and that the in-situ
methodology has not worked as intended.
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3.3.2 Comparing Two Proportionsor Percentiles

This section considers hypotheses concerning two population proportions (or two population
percentiles); for example, one might use these teststo compare the proportion of children with elevated blood
lead in one urban area compared with the proportion of children with elevated blood lead in another area. The
population proportion isthe ratio of the number of eementsin a subset of the total population to the total
number of elements, where the subset has some specific characteristic that the rest of the elementsdo not. A
population percentile represents the percentage of elements of a population having values less than some
threshold value C.

Let P, represent the true proportion for population 1, and P, represent the true proportion of
population 2. The hypotheses considered in this section are:

Casel: Hy P -P,< 9, vs. H,: P, -P,>9,; and

Case2: Hy P,-P,> 9, vs. H,: P, -P, <9,
An equivalent null hypothesis for Case 1, written in terms of percentiles,isH ,: the 100P," percentile minus
the 100P," percentileis C or larger, the reverse applying to Case 2. Since any hypothesis about the
proportion below athreshold can be converted to an equivaent hypothesis about percentiles (see section
3.2.2), thisguidance will only consider hypotheses concerning proportions.

The information required for thistest includes the null and aternative hypotheses (either Case 1 or
Case 2); the gray region (i.e.,, avdue 0, > 0§, for Case 1 or avaue 9, < §, for Case 2, representing the bound

of the gray region); the false positive error rate o at d,; the false negative error rate 3 at d,; and any additiona
limits on decision errors.

3.3.2.1 Two-Sample Test for Proportions

PURPOSE

The two-sample test for proportions can be used to compare two popul ation percentiles or
proportions and is based on an independent random sampleof m (X |, X,, . .., X,,) from the first population
and an independent random samplesizen (Y ,,Y,, ..., Y ) from the second population.

ASSUMPTIONS AND THEIR VERIFICATION

The principal assumption isthat of random sampling from the two populations.

LIMITATIONS AND ROBUSTNESS

The two-sample test for proportionsis valid (robust) for any underlying distributional shapeandis
robust to outliers, providing they are not pure data errors.

SEQUENCE OF STEPS

Directions for atwo-sample test for proportions for asimple random sample and a systematic smple
random sample are given in Box 3.3-5; an exampleis provided in Box 3.3-6.
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Box 3.3-5: Directions for a Two-Sample Test for Proportions
for Simple and Systematic Random Samples

The following describes the steps for applying the two-sample test for proportions for Case 1 (H: P, - P, < 0).
Modifications for Case 2 (H,: P, - P, > 0) are given in braces { }.

STEP 1: Given m random samples X, X,, . . . , X, from the first population, and n samples from the
second population, Y, Y,, . .., Y,, let k; be the number of points from sample 1 which exceed C,
and let k, be the number of points from sample 2 which exceed C. Calculate the sample
proportions p, = k;/m and p, = k,/n. Then calculate the pooled proportion

p = (k+k) / (m+n).

STEP 2: Compute mp,, m(1-p,), np,, n(1-p,). If all of these values are greater than or equal to 5,
continue. Otherwise, seek assistance from a statistician as analysis is complicated.

STEP3:  Caleulate z = (p; - p,) / yp(1 - p)(I/m + 1/n).

Use Table A-1 of Appendix A to find the critical value z_, such that 100(1-)% of the normal
distribution is below z, .. For example, if @ = 0.05 then z, , = 1.645.

Ifz>z ,{z <-z ..}, the null hypothesis may be rejected. Go to Step 5.

Ifz » z,,{z « -z,.,}, there is not enough evidence to reject the null hypothesis. Therefore, the
false negative error rate will need to be verified. Go to Step 4.

STEP 4: If the null hypothesis (H,) was not rejected, calculate either the power of the test or the sample
size necessary to achieve the false positive and false negative error rates. If only one false
negative error rate (8) has been specified at P, - P,, it is possible to calculate the sample sizes
that achieve the DQOs (assuming the proportions are equal to the values estimated from the
sample) instead of calculating the power of the test. To do this, calculate

2z, +2, ,)*P(1-P) _ P,+P
= @+ 2 P -P) where P = 1 2

(P,-P)? 2

m*=n*

and z, is the p" percentile of the standard normal distribution (Table A-1 of Appendix A). If both
m and n exceed m', the false negative error rate has been satisfied. If both m and n are below
m’, the false negative error rate has not been satisfied.

If m" is between m and n, use a software package like the DEFT software (EPA G-4D, 1994) or
the DataQUEST software (EPA G-9D, 1996) to calculate the power of the test, assuming that
the true values for the proportions P, and P, are those obtained in the sample. If the estimated
power is below 1B, the false negative error rate has not been satisfied.

STEP 5: The results of the test could be:

1) the null hypothesis was rejected, and it seems the difference in proportions is greater than 0
{less than 0};

2) the null hypothesis was not rejected, the false negative error rate was satisfied, and it seems
the difference in proportions is less than or equal to 0 {greater than or equal to 0}; or

3) the null hypothesis was not rejected, the false negative error rate was not satisfied, and it
seems the difference in proportions is less than or equal to 0 {greater than or equal to 0}, but this
outcome is uncertain because the sample size was probably too small.
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Box 3.3-6: An Example of a Two-Sample Test for Proportions
for Simple and Systematic Random Samples

At a hazardous waste site, investigators must determine whether an area suspected to be contaminated with
dioxin needs to be remediated. The possibly contaminated area (area 1) will be compared to a reference area
(area 2) to see if dioxin levels in area 1 are greater than dioxin levels in the reference area. An inexpensive
surrogate probe was used to determine if each individual sample is either “contaminated,” i.e., over the health
standard of 1 ppb, or “clean,” i.e., less than the health standard of 1 ppb. The null hypothesis will be that the
proportion or contaminant levels in area 1 is less than or equal to the proportion in area 2, orH: P, -P, <0
(Case 1). The decision maker is willing to accept a false positive decision error rate of 10% (x) and a false-
negative decision error rate of 5% () when the difference in proportions between areas exceeds 0.10. A
team collected 92 readings from area 1 (of which 12 were contaminated) and 80 from area 2, the reference
area, (of which 10 were contaminated).

STEP 1: The sample proportion for area 1 is p, = 12/92 = 0.130, the sample proportion for area 2 is
p, = 10/80 = 0.125, and the pooled proportion p = (12 + 10) / (92 + 80 ) = 0.128.

STEP 2: mp, = 12, m(1-p,) = 80, np, = 10, n(1-p,) =70. Because these values are greater than or equal
to 5, continue to step 3.

STEP3:  z = (0.130 - 0.125) / /0.128(1 - 0.128) (192 + 1/80) = 0.098

Table A-1 of Appendix A was used to find the critical value z 4, = 1.282.

Because z » 7,4, (0.098 » 1.282), there is not enough evidence to reject the null hypothesis and
the false negative error rate will need to be verified. Go to Step 4.

STEP 4: Because the null hypothesis (H,) was not rejected, calculate the sample size necessary to
achieve the false positive and false negative error rates. Because only one false negative error
rate (B = 0.05) has been specified (at a difference of P, - P, = 0.1), it is possible to calculate the
sample sizes that achieve the DQOSs, assuming the proportions are equal to the values estimated
from the sample:

2(1.282 + 1.645)20.1275 (1 - 0.1275)

m*=n* = =190.6 (i.e, 191 samples)
(0.1)?
where 01275 = P = L;O'O%

Because both m and n are less than m, the false negative error rate has not been satisfied.

STEP 5: The null hypothesis was not rejected, and the false negative error rate was not satisfied.
Therefore, it seems that there is no difference in proportions and that the contaminant
concentrations of the investigated area and the reference area are probably the same. However,
this outcome is uncertain because the sample sizes obtained were in all likelihood too small.
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3.3.3 Nonparametric Comparisons of Two Populations

In many cases, assumptions on distributional characteristics are difficult to verify or difficult to
satisfy for both populations. In this case, several distribution-free test procedures are available that compare
the shape and location of the two distributionsinstead of a statistical parameter (such as amean or median).
The statistical tests described below test the null hypothesis“H ,: the distributions of population 1 and
population 2 are identical (or, the site is not more contaminated than background)” versus the alternative
hypothesis“H ,: part of the distribution of population 1 islocated to the right of the distribution of
population 2 (or the site is more contaminated than background).” Because of the structure of the hypothesis
tests, the labeling of populations 1 and 2 is of importance. For most environmental applications, population
listheareaof interest (i.e., the potentially contaminated area) and population 2 isthe reference area.

Thereisno forma satistical parameter of interest in the hypotheses stated above. However, the
concept of false positive and false negative error rates till applies.

3.3.3.1 TheWilcoxon Rank Sum Test
PURPOSE

The Wilcoxon rank sum test can be used to compare two population distributions based on m
independent random samples X ;, X,, . .., X, from the first population, and n independent random samples
Y.,Y, ..., Y, fromthe second population. When applied with the Quantile test (section 3.3.3.2), the
combined tests are most powerful for detecting true differences between two population distributions.

ASSUMPTIONS AND THEIR VERIFICATION

The vdidity of the random sampling and independence assumptions should be verified by review of
the procedures used to sdlect the sampling points. The two underlying distributions are assumed to have the
same shape and dispersion, so that one distribution differs by some fixed amount (or isincreased by a
constant) when compared to the other distribution. For large samples, to test whether both site distributions
have approximately the same shape, one can create and compare histograms for the samples.

LIMITATIONS AND ROBUSTNESS

The Wilcoxon signed rank test may produce mideading results if many data values are the same.
When values are the same, their relative ranks are the same, and this has the effect of diluting the statistical
power of the Wilcoxon rank sum test. Estimated concentrations should be reported for data below the
detection limit, even if these estimates are negetive, because their relative magnitude to the rest of the dataiis
of importance. Animportant advantage of the Wilcoxon rank sum test isits partial robustnessto outliers,
because the analysis is conducted in terms of rankings of the observations. This limits the influence of
outliers because a given data point can be no more extreme than thefirst or last rank.

SEQUENCE OF STEPS

Directions and an example for the Wilcoxon rank sum test are given in Box 3.3-7 and Box 3.3-8.
However, if ardatively large number of samples have been taken, it is more efficient in terms of statistical
power to use alarge sample approximation to the Wilcoxon rank sum test (Box 3.3-9) to obtain the critical
values of W.
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Box 3.3-7: Directions for the Wilcoxon Rank Sum Test
for Simple and Systematic Random Samples

Let X, X,, . . ., X, represent the n data points from population 1 and Y, Y,, . . ., Y,, represent the m data
points from population 2 where both n and m are less than or equal to 20. For Case 1, the null
hypothesis will be that population 1 is shifted to the left of population 2 with the alternative that population
1 is either the same as or shifted to the right of population 2; Case 2 will be that population 1 is shifted to
the right of population 2 with the alternative that population 1 is the same as or shifted to the left of
population 2; for Case 3, the null hypothesis will be that there is no difference between the two
populations and the alternative hypothesis will be that population 1 is shifted either to the right or left of
population 2. If either m or n are larger than 20, use Box 3.3-9.

STEP 1. List and rank the measurements from both populations from smallest to largest, keeping track
of which population contributed each measurement. The rank of 1 is assigned to the smallest
value, the rank of 2 to the second smallest value, and so forth. If there are ties, assign the
average of the ranks that would otherwise have been assigned to the tied observations.

STEP 2: Calculate R as the sum of the ranks of the data from population 1, then calculate

n(n+1)
—

W =R -

STEP 3: Use Table A-7 of Appendix A to find the critical value y (or w,, for Case 3). For Case 1,
reject the null hypothesis if W > nm - w. For Case 2, reject the null hypothesis if W < w. For
Case 3, reject the null hypothesis if W > nm -y, or W < w,,,. If the null hypothesis is
rejected, go to Step 5. Otherwise, go to Step 4.

STEP 4: If the null hypothesis (H)) was not rejected, calculate either the power of the test or the sample
size necessary to achieve the false positive and false negative error rates. If only one false
negative error rate @) has been specified (atd,), it is possible to calculate the sample size that
achieves the DQOs, assuming the true mean and standard deviation are equal to the values
estimated from the sample, instead of calculating the power. If m and n are large, calculate:

252z, +7. )3
m*=n" = (1—“123) + (0.25)22,
(61760)

where z, is the p" percentile of the standard normal distribution (Table A-1 of Appendix A).
Then, multiply m* and n* by 1.16 to account for loss in efficiency, and, if 1.16m# m and
1.16n* < n, the false negative error rate has been satisfied; if the values of m and n are
otherwise, the false negative error rate has not been satisfied.

STEP 5. The results of the test could be:

1) the null hypothesis was rejected, and it seems that population 1 is shifted to the right
(Case 1), to the left (Case 2) or to the left or right (Case 3) of population 2.

2) the null hypothesis was not rejected, the false negative error rate was satisfied, and it
seems that population 1 is shifted to the left (Case 1) or to the right (Case 2) of population 2,
or there is no difference between the two populations (Case 3).

3) the null hypothesis was not rejected, the false negative error rate was not satisfied, and it
seems that population 1 is shifted to the left (Case 1) or to the right (Case 2) of population 2,
or there is no difference between the two populations (Case 3), but this result is uncertain
because the sample sizes were probably too small.
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Box 3.3-8: An Example of the Wilcoxon Rank Sum Test
for Simple and Systematic Random Samples

At a hazardous waste site, area 1 (cleaned using an in-situ methodology) was compared with a similar
(but relatively uncontaminated) reference area, area 2. If the in-situ methodology worked, then the two
sites should be approximately equal in average contaminant levels. If the methodology did not work,
then area 1 should have a higher average than the reference area. The null hypothesis will be that area 1
is shifted to the right of area 2 and the alternative hypothesis will be that there is no difference between
the two areas or that that area 1 is shifted to the left of area 2 (Case 2). The false positive error rate was
set at 10% and the false negative error rate was set at 20%0) if the difference between the areas is 2.5
ppb. Seven random samples were taken from area 1 and eight samples were taken from area 2:

Area 1 Area 2
17, 23, 26,5 16, 20,5, 4
13, 13,12 8,10,7,3

STEP 1. The data listed and ranked by size are (Area 1 denoted by *):

Data (ppb): 3, 4, 5, 5% 7, 8% 10, 12, 13* 13* 16, 17* 20, 23* 26*
Rank: 1, 2,35,35% 5 6% 7, 8, 95*05* 11, 12* 13, 14* 15+

STEP2 R=35+6+95+95+12+14+15=695. W=695-7(7 +1)/2=415

STEP 3. Using Table A-7 of Appendix A,a = 0.10 and W, = 17. Since 41.5 > 17, do not reject the null
hypothesis.

STEP 4: The null hypothesis was not rejected and it would be appropriate to calculate the probable
power of the test. However, because the number of samples is small, extensive computer
simulations are required in order to estimate the power of this test which is beyond the scope
of this guidance.

STEP 5. The null hypothesis was not rejected. Therefore, it is likely that there is no difference between
the investigated area and the reference area, although the statistical power is low due to the
small sample sizes involved.
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Box 3.3-9: Directions for the Large Sample Approximation
to the Wilcoxon Rank Sum Test for Simple and Systematic Random Samples

Let X, X5, . . ., X, represent the n data points from population 1 and Y, Y,, . . ., Y,, represent the m data
points from population 2 where both n and m are greater than 20. For Case 1, the null hypothesis will be
that population 1 is shifted to the left of population 2 with the alternative that population 1 is the same as
or shifted to the right of population 2; for Case 2, the null hypothesis will be that population 1 is shifted to
the right of population 2 with the alternative that population 1 is the same as or shifted to the left of
population 2; for Case 3, the null hypothesis will be that there is no difference between the populations
and the alternative hypothesis will be that population 1 is shifted either to the right or left of population 2.

STEP 1. List and rank the measurements from both populations from smallest to largest, keeping track
of which population contributed each measurement. The rank of 1 is assigned to the smallest
value, the rank of 2 to the second smallest value, and so forth. If there are ties, assign the
average of the ranks that would otherwise have been assigned to the tied observations.

STEP 2: Calculate W as the sum of the ranks of the data from population 1.

STEP 3: Calculate Wp =

n(n 4+ 1 xyn(n + 1)(2n + 1)/24 where p =1 -a for Case 1,

p = a for Case 2, and z, is the p" percentile of the standard normal distribution (Table A-1 of
Appendix A). For Case 3, calculate both vy, (p = a/2) and w; _,,, (p = 1 - a/2).

STEP 4: For Case 1, reject the null hypothesis if W > w,. For Case 2, reject the null hypothesis if
W < w,. For Case 3, reject the null hypothesis if W > w,,, or W < w_,. If the null hypothesis
is rejected, go to Step 6. Otherwise, go to Step 5.

STEP 5: If the null hypothesis (H)) was not rejected, calculate either the power of the test or the sample
size necessary to achieve the false positive and negative error rates. If only one false negative
error rate (3) has been specified (atd,), it is possible to calculate the sample size that achieves
the DQOs, assuming the true mean and standard deviation are equal to the values estimated
from the sample, instead of calculating the power of the test. If m and n are large, calculate:

252z, +7. )3
m*=n" = (1—“123) + (0.25)22,
(61760)

where z, is the p" percentile of the standard normal distribution (Table A-1 of Appendix A). If
1.16m* < m and 1.16n* < n, the false negative error rate has been satisfied.

STEP 6: The results of the test could be:

1) the null hypothesis was rejected, and it seems that population 1 is shifted to the right
(Case 1), to the left (Case 2) or to the left or right (Case 3) of population 2.

2) the null hypothesis was not rejected, the false negative error rate was satisfied, and it
seems that population 1 is shifted to the left (Case 1) or to the right (Case 2) of population 2,
or there is no difference between the two populations (Case 3).

3) the null hypothesis was not rejected, the false negative error rate was not satisfied, and it
seems that population 1 is shifted to the left (Case 1) or to the right (Case 2) of population 2,
or there is no difference between the two populations (Case 3), but this result is uncertain
because the sample sizes were probably too small.
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3.3.3.2 TheQuantile Test
PURPOSE

The Quantile test can be used to compare two populations based on the independent random samples
X, X, -0 X, from the first populationand Y 4, Y, .. ., Y, from the second population. When the Quantile
test and the Wilcoxon rank sum test (section 3.3.3.1) are applied together, the combined tests are the most
powerful at detecting true differences between two populations.

ASSUMPTIONS AND THEIR VERIFICATION

The Quantile test assumesthat thedata X ,, X,, . . ., X,, are arandom sample from population 1, and
thedatayY ,, Y,, ..., Y, aearandom sample from population 2, and the two random samples are independent
of one ancther. The validity of the random sampling and independence assumptions is assured by using
proper randomization procedures, either random number generators or tables of random numbers. The
primary verification required is to review the procedures used to select the sampling points. Thetwo
underlying distributions are assumed to have the same underlying dispersion (variance).

LIMITATIONS AND ROBUSTNESS

The Quantile test is not robust to outliers. In addition, the test assumes either a systematic (e.g., a
triangular grid) or smple random sampling was employed. The Quantile test may not be used for stratified
designs.

SEQUENCE OF STEPS

The Quantile test is difficult to implement by hand. Therefore, directions are not included in this
guidance. However, the DataQUEST software (EPA G-9D, 1996) can be used to conduct thistest.

3.34 Comparing Two Medians

Let {1, represent the median of population 1 and i, represent the median of population 2. The
hypothesis considered in this section are:

Casel: Hy fy-py,< 8y vs Hyt iy - 1, > 9p; and
Case2: Hy fy-fy,> 0y VS Hyl iy - |1, <9,

An example of atwo-sampletest for the difference between two population medians is comparing the median
contaminant level at a Superfund site to the median of abackground site. Inthiscase, 9, would be zero.

The median is also the 50 ™ percentile, and, therefore, the methods described in section 3.3.2 for
percentiles and proportions may be used to test hypotheses concerning the difference between two medians by
letting P, = P, = 0.50. The Wilcoxon rank sum test (section 3.3.3.1) is aso recommended for comparing two
medians. Thistest is more powerful than those for proportions for symmetric distributions.
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STEP 4: VERIFY THE ASSUMPTIONSOF THE STATISTICAL TEST

CHAPTER 4

THE DATA QUALITY ASSESSMENT PROCESS

Review DQOs and Sampling Design

‘ VERIFY THE ASSUMPTIONS OF THE
STATISTICAL TEST
Conduct Preliminary Data Review
Purpose
‘ Examine the underlying assumptions of the statistical

Select the Statistical Test

‘ Activities

Verify the Assumptions

‘ « Perform Tests of Assumptions
« Determine Corrective Actions

Draw Conclusions From the Data

Tools

« Tests of distributional assumptions
« Tests for independence and trends
« Tests for dispersion assumptions

hypothesis test in light of the environmental data.

« Determine Approach for Verifying Assumptions

Step 4: Verify the Assumptions of the Statistical Test
® Determine approach for verifying assumptions.
= |dentify any strong graphical evidence from the preliminary data review.
= Review (or develop) the statistical model for the data.
= Select the tests for verifying assumptions.
® Perform tests of assumptions.
= Adjust for bias if warranted.
= Perform the calculations required for the tests.
® If necessary, determine corrective actions.
= Determine whether data transformations will correct the problem.
= |f data are missing, explore the feasibility of using theoretical justification or
collecting new data.
= Consider robust procedures or nonparametric hypothesis tests.
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STEP4: VERIFY THE ASSUMPTIONSOF THE STATISTICAL TEST

Test Section | Directions | Example
Testsfor Shapiro Wilk W Test 422
/'igzirggﬂ ona Filliben's Statistic 423
Coefficient of Variation Test 424 Box 4.2-1 Box 4.2-1
Skewness and Kurtosis Tests 425
Studentized Range Test 4.2.6 Box 4.2-2 Box 4.2-2
Geary's Test 426 Box 4.2-3 Box 4.2-4
Goodness-of-Fit Tests 427
Testsfor Test of a Correlation Coefficient 4322 | Box4.31 Box 4.3.1
Trends Mann-Kendall Test 4341 |Box433 | Box4.34
4342 | Box4.35 Box 4.3.6
Testsfor an Overall Monaotonic Trend 4343 | Box4.3-8
Testsfor Extreme Vaue Test 443 Box 4.4-1 Box 4.4-2
Outliers Discordance Test 444 | Box443 | Box44-4
Rosner's Test 445 Box 4.4-5 Box 4.4-6
Walsh's Test 4.4.6 Box 4.4-7
Testsfor Confidence Intervalsfor aVariance 451 Box 4.5-1 Box 4.5-1
Dispersion F-Test 452 | Box452 | Box452
Bartlett's Test 453 Box 4.5-3 Box 4.5-4
Levene'sTest 454 Box 4.5-5 Box 4.5-6
Transformations Logarithmic, Square Root, Inverse 4.6 Box 4.6-1 Box 4.6-1
Sine, Box-Cox Transformations
Data below Substitution Methods 471
DetectionLimit ™ s Adjustment 4721 | Box47-1 | Box47-2
Trimmed Mean 4722 | Box4.7-4 Box 4.7-5
Winsorization 4723 | Box4.7-6 Box 4.7-7
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CHAPTER 4
STEP 4: VERIFY THE ASSUMPTIONSOF THE STATISTICAL TEST

41 OVERVIEW AND ACTIVITIES

In this step, the analyst should assess the validity of the statistical test chosen in step 3 by examining
its underlying assumptionsin light of the newly generated environmental data. The principal thrust of this
section isthe determination of whether the data support the underlying assumptions necessary for the selected
test, or if modifications to the data are necessary prior to further statistical analysis.

This determination can be performed quantitatively using statistical analysis of datato confirm or
reject the assumptions that accompany any statistical test. Almost always, however, the quantitative
techniques must be supported by qualitative judgments based on the underlying science and engineering
aspects of the study. Graphical representations of the data, such as those described in Chapter 2, can provide
important qualitative information about the reasonableness of the assumptions. Documentation of thisstep is
important, especialy when subjective judgments play a pivota role in accepting the results of the analysis.

If the data support all of the key assumptions of the statistical test, then the DQA Process continues
to the next step, drawing conclusions from the data (Chapter 5). However, often one or more of the
assumptions will be called into question which may trigger areevauation of one of the previous steps. This
iteration in the DQA Process is an important check on the validity and practicality of the results.

411 DeermineApproach for Verifying Assumptions

In most cases, assumptions about distributional form, independence, and dispersion can be verified
formally using the statistical tests described in the technical sectionsin the remainder of this chapter,
although in some situations, information from the preliminary datareview may serve as sufficiently strong
evidence to support the assumptions. As part of this activity, the analyst should identify methods to verify
that the type and quantity of datarequired to perform the desired test are available. The outputs of this
activity should include alist of the specific tests that will be used to verify the assumptions.

The methods and approach chosen for assumption verification depend on the nature of the study and
its documentation. For example, if computer simulation was used to estimate the theoretical power of the
statistical test, then this simulation model should be the basis for evauation of the effect of changesto
assumptions using estimates calculated from the data to replace simulation values.

If it isnot already part of the design documentation, the analyst may need to formulate a Satistical
mode! that describesthe data. |n atatistical model, the data are conceptually decomposed into elements that
are assumed to be “fixed” (i.e., the component is either a constant but unknown feature of the population or is
controlled by experimentation) or “random” (i.e., the component is an uncontrolled source of variation).
Which components are considered fixed and which are random is determined by the assumptions made for the
statistical test and by the inherent structure of the sampling design. The random components that represent
the sources of uncontrolled variation could include severa types of measurement errors, aswell as other
sources such astemporal and/or spatial components.

In addition to identifying the components that make up an observation and specifying which are fixed
and which are random, the mode should also define whether the various components behave in an additive or
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multiplicative fashion (or some combination). For example, if temporal or spatial autocorrelations are
believed to be present, then the model needs to identify the autocorrelation structure (see section 2.3.8).

412 Peform Testsof Assumptions

For mogt statistical tests, investigators will need to assess the reasonabl eness of assumptionsin
relation to the structure of the components making up an observation. For example, at-test assumes that the
components, or errors, are additive, uncorrelated, and normally distributed with homogeneous variance.
Basic assumptions that should be investigated include:

(@D} Isit reasonable to assume that the errors (deviations from the model) are normally
distributed? If adequate data are available, then standard tests for normality can be
conducted (e.g., the Shapiro-Wilk test or the Kolmogorov-Smirnov test).

2 Isit reasonable to assume that errors are uncorrelated? Whileit is natural to assume that
analytical errorsimbedded in measurements made on different sample units are independent,
other errors from other sources may not be independent. If sample units are “too close
together,” either in time or space, independence may not hold. If the statistical test assumes
independence and this assumption is not correct, the proposed false positive and false
negative error rates (o and P) for the statistical test cannot be verified.

3 Isit reasonable to assume that errors are additive and have a constant variability? If
sufficient data are available, a plot of the relevant standard deviations versus mean
concentrations may be used to discern if variability tends to increase with concentration
level. If so, transformations of the data may make the additivity assumption more tenable.

One of the most important assumptions underlying the statistical procedures described herein is that
thereisno inherent bias (systematic deviation from the true value) in the data. The general approach adopted
hereisthat if along term biasis known to exist, then adjustment for this bias should be made. If biasis
present, then the basic effect isto shift the power curves associated with a given test to the right or left,
depending on the direction of the bias. Thus substantial distortion of the nomina Type | (false positive) and
Type I (false negative) decision error rates may occur. |n general, bias cannot be discerned by examination
of routine data; rather, appropriate and adequate QA data are needed, such as performance evaluation data. If
one chooses not to make adjustment for bias on the basis of such data, then one should, at aminimum,
construct the estimated worse-case power curves so as to understand the potential effects of the bias.

413 Determine Corrective Actions

Sometimes the assumptions underlying the primary statistical test will not be satisfied and sometype
of corrective action will be required before proceeding. In some cases, atransformation of the data will
correct a problem with distributional assumptions. In other cases, the data for verifying some key assumption
may not be available, and existing information may not support atheoretical justification of the validity of the
assumption. Inthis situation, it may be necessary to collect additional datato verify the assumptions. If the
assumptions underlying a hypothesis test are not satisfied, and data transformations or other modifications do
not appear feasible, then it may be necessary to consider an aternative statistical test. These include robust
test procedures and nonparametric procedures. Robust test procedures involve modifying the parametric test
by using robust estimators. For instance, as a substitute for at-test, atrimmed mean and its associated
standard error (section 4.7.2) might be used to form at-type statistic.
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4.2 TESTSFOR DISTRIBUTIONAL ASSUMPTIONS

Many statistical tests and models are only appropriate for data that follow a particular distribution.
This section will aid in determining if a distributional assumption of a statistical test is satisfied, in particular,
the assumption of normality. Two of the most important distributions for tests involving environmental data
are the normal distribution and the lognormal distribution, both of which are discussed in this section. To test
if the datafollow adistribution other than the normal distribution or the lognormal distribution, apply the chi-
sguare test discussed in section 4.2.7 or consult a statistician.

There are many methods available for verifying the assumption of hormality ranging from smpleto
complex. This section discusses methods based on graphs, sample moments (kurtosis and skewness), sample
ranges, the Shapiro-Wilk test and closely related tests, and goodness-of -fit tests. Discussions for the smplest
tests contain step-by-step directions and examples based onthe datain Table 4.2-1. Thesetestsare
summarized in Table 4.2-2. This section ends with a comparison of the teststo help the analyst select atest
for normality.

Table4.2-1. Datafor Examplesin Section 4.2

x =11.57

1563 | 11.00 | 11.75 | 1045 | 1318 | 1037 |1054 |1155 |11.01 |10.23 <= 1677

The assumption of normality isvery important asit is the basis for the mgjority of statistical tests.
A normal, or Gaussian, distribution is one of the most common probability distributions in the analysis of
environmental data. A normal distribution is a reasonable model of the behavior of certain random
phenomena and can often be used to approximate other probability distributions. In addition, the Centra
Limit Theorem and other limit theorems state that as the sample size getslarge, some of the sample summary
statistics (e.g., the sample mean) behave asif they are anormally distributed variable. Asaresult, acommon
assumption associated with parametric tests or statistical models isthat the errors associated with data or a
model follow anormal distribution.

The graph of anormally distributed random variable, anormal curve, is bell-shaped (see Figure
4.2-1) with the highest point located at the mean which isequal to the median. A norma curve is symmetric

03[
02k ~«— Normal Distribution
01k Lognormal Distribution
0
0 5 10 15 20 25

Figure4.2-1. Graph of aNormal and Lognormal Distribution

EPA QA/G-9 42-1 QA96



about the mean, hence the part to the | eft of the mean isamirror image of the part to theright. In
environmental data, random errors occurring during the measurement process may be normally distributed.

Environmental data commonly exhibit frequency distributions that are non-negative and skewed with
heavy or long right tails. Several standard parametric probability models have these properties, including the
Weibull, gamma, and lognormal distributions. The lognormal distribution (Figure 4.2-1) isacommonly used
distribution for modeling environmental contaminant data. The advantage to this distribution isthat asimple
(logarithmic) transformation will transform alognormal distribution into anormal distribution. Therefore,
the methods for testing for normality described in this section can be used to test for lognormality if a
logarithmic transformation has been used.

Table4.2-2. Testsfor Normality

Sample Data-
Test Section Size Recommended Use QUEST
Shapiro Wilk W 422 <50 Highly recommended. Yes
Test
Filliben's 423 < 100 Highly recommended. Yes
Statistic
Coefficient of 424 Any Only useto quickly Yes
Variation Test discard an assumption of
normality.
Skewness and 425 >50 Useful for large sample Yes
Kurtosis Tests Sizes.
Geary's Test 4.2.6 >50 Useful when tables for Yes
other tests are not
available.
Studentized 426 <1000 | Highly recommended Yes
Range Test (with some conditions).
Chi-Square Test | 4.2.7 Large® | Useful for grouped data No
and when the comparison
distribution is known.
Lilliefors 427 >50 Useful when tables for No
Kolmogorov- other tests are not
Smirnoff Test avalable.

@ The necessary sample size depends on the number of groups formed when implementing thistest. Each
group should contain at least 5 observations.

EPA QA/G-9 42-2 QA96



421 Graphical Methods

Graphical methods (section 2.3) present detailed information about data sets that may not be
apparent from atest statistic. Histograms, stem-and-leaf plots, and normal probability plots are some
graphical methods that are useful for determining whether or not data follow anormal curve. Both the
histogram and stem-and-leaf plot of anormal distribution are bell-shaped. The normal probability plot of a
normal distribution follows astraight line. For non-normally distributed data, there will be large deviationsin
thetails or middle of anormal probability plot.

Using aplot to decideif the data are normally distributed involves making a subjective decision. For
extremely non-normal data, it is easy to make this determination; however, in many casesthe decision is not
straightforward. Therefore, formal test procedures are usually necessary to test the assumption of normality.

422 Shapiro-Wilk Test for Normality (the W test)

One of the most powerful tests for normality isthe W test by Shapiro and Wilk. Thistestissimilar
to computing a correlation between the quantiles of the standard normal distribution and the ordered values of
adataset. If the normal probability plot is approximately linear (i.e., the data follow anormal curve), the test
statistic will berelatively high. If the normal probability plot contains significant curves, the test statistic will
be relatively low.

The W test isrecommended in severa EPA guidance documents and in many statistical texts.
Tables of critical values for sample sizes up to 50 have been devel oped for determining the significance of the
test statistic. However, thistest is difficult to compute by hand since it requires two different sets of tabled
values and alarge number of summations and multiplications. Therefore, directions for implementing this
test are not given in this document, but the test is contained in the DataQUEST software package (QA/G-9D,
1996).

423 Extensionsof the Shapiro-Wilk Test (Filliben's Statistic)

Because the W test may only be used for sample sizes |ess than or equal to 50, severd related tests
have been proposed. D'Agostino’ stest for sample sizes between 50 and 1000 and Royston’ stest for sample
sizes up to 2000 are two such tests that approximate some of the key quantities or parameters of the W test.

Another test related to the W test isthe Filliben statistic, also called the probability plot correlation
coefficient. Thistest measuresthe linearity of the points on the normal probability plot. Similar to the W
test, if the normal probability plot is approximately linear (i.e., the datafollow anormal curve), the
correlation coefficient will be relatively high. If the normal probability plot contains significant curves (i.e.,
the data do not follow anormal curve), the correlation coefficient will be relatively low. Although easier to
compute that the W test, the Filliben statistic is till difficult to compute by hand. Therefore, directions for
implementing thistest are not given in this guidance; however, it is contained in the DQA DataQUEST
software package (QA/G-9D, 1996).
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424 Coefficient of Variation

The coefficient of variation (CV) may be used to quickly determine whether or not the datafollow a
normal curve by comparing the sample CV to 1. The use of the CV isonly valid for some environmental
applicationsif the data represent a non-negative characteristic such as contaminant concentrations. If the CV
is greater than 1, the data should not be modeled with anormal curve. However, thismethod  should not be
used to conclude the opposite, i.e., do not conclude that the data can be modeled with anormal curveif the
CV islessthan 1. Thistest isto be used only in conjunction with other statistical tests or when graphical
representations of the data indicate extreme departures from normality. Directions and an example of this
method are contained in Box 4.2-1.

425 Coefficient of Skewness/Coefficient of Kurtosis Tests

The degree of symmetry (or asymmetry) displayed by a data set is measured by the coefficient of
skewness (g,). The coefficient of kurtosis, g ,, measures the degree of flatness of a probability distribution
near its center. Severa test methods have been proposed using these coefficients to test for normality. One
method tests for normality by adjusting the coefficients of skewness and kurtosis to approximate a standard
normal distribution for sample sizes greater than 50.

Two other tests based on these coefficients include a combined test based on a chi-squared (- ?)
distribution and Fisher's cumulant test. Fisher's cumulant test computes the exact sampling distributionof g
and g,; therefore, it is more powerful than previous methods which assume that the distributions of the two
coefficientsare normal. Fisher's cumulant test requires atable of critical values, and these tests require a
sample size of greater than 50. Tests based on skewness and kurtosis are rarely used asthey are difficult to
compute and less powerful than many alternatives.

Box 4.2-1: Directions for the Coefficient of Variation Test for
Environmental Data and an Example

Directions

L) (x-%)2 22

n-1i7

1 n
13°x

ni-1

STEP 1: Calculate the coefficient of variation (CV): CV = s/ X =

STEP 2: If CV > 1.0, conclude that the data are not normally distributed. Otherwise, the test is inconclusive.

Example

The following example demonstrates using the coefficient of variation to determine that the data in Table 4.2-1
should not be modeled using a normal curve.

STEP 1: Calculate the coefficient of variation (CV): CV

STEP 2: Since 0.145 » 1.0, the test is inconclusive.
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426 RangeTests

Almost 100% of the area of anormal curve lieswithin 5 standard deviations from the mean and
tests for normality have been developed based on thisfact. Two such tests, which are both smple to apply,
are the studentized range test and Geary'stest. Both of these tests use aratio of an estimate of the sample
range to the sample standard deviation. Very large and very small values of the ratio then imply that the data
are not well modeled by anormal curve.

a. Thestudentized rangetest (or w/stest). Thistest comparesthe range of the sampleto the
sample standard deviation. Tables of critical values for sample sizes up to 1000 (Table A-2 of Appendix A)
are available for determining whether the absolute value of thisratio issignificantly large. Directionsfor
implementing this method are given in Box 4.2-2 along with an example. The studentized range test does not
perform well if the data are asymmetric and if the tails of the data are heavier than the normal distribution. In
addition, thistest may be sensitive to extreme values. Unfortunately, lognormally distributed data, which are
common in environmental applications, have these characteristics. |If the data appear to be lognormally
distributed, then thistest should not be used. In most cases, the studentized range test performs as well as the
Shapiro-Wilk test and is much easier to apply.

b. Geary'sTest. Geary'stest usestheratio of the mean deviation of the sample to the sample
standard deviation. Thisratio isthen adjusted to approximate a standard normal distribution. Directions for
implementing this method are given in Box 4.2-3 and an exampleis givenin Box 4.2-4. Thistest does not
perform aswdll as the Shapiro-Wilk test or the studentized range test. However, since Geary'stest satistic is
based on the normal distribution, critical values for all possible sample sizes are available.

Box 4.2-2: Directions for Studentized Range Test
and an Example

Directions

STEP 1: Calculate sample range (w) and sample standard deviation (s) using section 2.2.3.

STEP 2: Compare % = M to the critical values given in Table A-2 (labeled a and b).
If w/s falls outside the two critical values then the data do not follow a normal curve.

Example

The following example demonstrates the use of the studentized range test to determine if the data from Table
4.2-1 can be modeled using a normal curve.

STEP 1: W = Xy - X(1y=15.63-10.23 =5.40 and s = 1.677.

STEP 2: w/s =5.4/1.677 = 3.22. The critical values given in Table A-2 are 2.51 and 3.875. Since 3.22
falls between these values, the assumption of normality is not rejected.
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Box 4.2-3: Directions for Geary's Test

STEP 1: Calculate the sample mean X, the sample sum of squares (SSS), and the sum of absolute
deviations (SAD):

L X

— n ” n —
X-1¥x, ss-3Yx*--2__ and 5D - ¥ XX
n iz i=1 n i-1
STEP 2: Calculate Geary's test statistic 4 = ———
YESS)
STEP 3: Test “a” for significance by computing Z = ﬂ Here 0.7979 and 0.2123 are

0.2123/y/n

constants used to achieve normality.

STEP 4: Use Table A-1 of Appendix A to find the critical value z_, such that 100(1-a)% of the normal
distribution is below z, ,. For example, ifa = 0.05, then z, , = 1.645. Declare “a” to be
sufficiently small or large (i.e., conclude the data are not normally distributed) if Z | > Z, ..

Box 4.2-4: Example of Geary's Test

The following example demonstrates the use of Geary's test to determine if the data from Table 4.2-1 can be
modeled using a normal curve.

— n n —
STEPL. X - 1} X = 11571, SAD = Y [X-X| = 11.694, and

ni-1 i=1
n
n (Z Xi)2
Sss=Y %P - L -1364.178 - 1338.88 = 25.298
i=1 n
stEP2. a - ——0 o 11694 5755
/NS  /10(25.298)
STEP 3: 7 - 0.735 - 0.7979 _ 0,934
0.2123/,/10
STEP 4: Since 1Z1 » 1.64 (5% significance level), there is not enough information to conclude that the

data do not follow a normal distribution.
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427 Goodness-of-Fit Tests

Goodness-of -fit tests are used to test whether data follow a specific distribution, i.e., how “good” a
specified distribution fits the data. In verifying assumptions of normality, one would compare the datato a
normal distribution with a specified mean and variance.

a. Chi-square Test. One classic goodness-of-fit test is the chi-square test which involves breaking
the datainto groups and comparing these groups to the expected groups from the known distribution. There
are no fixed methods for selecting these groups and this test also requires alarge sample size since at least 5
observations per group are required to implement thistest. In addition, the chi-square test does not have the
power of the Shapiro-Wilk test or some of the other tests mentioned above.

b. Kolmogorov-Smirnoff (K-S) Test and LillieforsK-STest. Another goodness-of-fit test isthe
Kolmogorov Smirnoff (K-S) test which also tests whether the data follow a specific distribution with known
parameters such as the mean and variance. Thistest requires that the sample size of the data be greater than
50. The Lilliefors K-Stest may be used for testing if the data are normally distributed when the sample size
islarger than 50 and the distribution parameters are estimated from the data. The Lilliefors K-Stest ismore
powerful than the chi-square test for large sample sizes and is recommended in several EPA guidance
documents.

428 Recommendations

Analysts can perform tests for normality with ssmples assmall as 3. However, the tests lack
statistical power for small sample size. Therefore, for small sample sizes, it isrecommended that a
nonparametric statistical test (i.e., one that does not assume a distributional form of the data) be selected
during Step 3 of the DQA Processin order to avoid incorrectly assuming the data are normally distributed
when there is smply not enough information to test this assumption.

If the sample size isless than 50, then this guidance recommends using the Shapiro-Wilk W test,
wherever practicable. The Shapiro-Wilk W test is one of most powerful tests for normality and it is
recommended in several EPA guidance asthe preferred test when the sample sizeislessthan 50. Thistestis
difficult to implement by hand but can be applied easily using the DQA DataQUEST software package
(QA/G-9D, 1996). If the Shapiro-Wilk W test is not feasible, then this guidance recommends using either
Filliben's statistic or the studentized range test. Filliben's statistic performs similarly to the Shapiro-Wilk
test. The studentized range isasimple test to perform; however, it is not applicable for non-symmetric data
with large tails. If the data are not highly skewed and the tails are not significantly large (compared to a
normal distribution), the studentized range provides asimple and powerful test that can be calculated by
hand. All three of these tests are included in the DataQUEST software (QA/G-9D, 1996).

If the sample sizeis greater than 50, this guidance recommends using either the Filliben's statistic or
the studentized range test. However, if critical values for these tests (for the specific sample size) are not
available, then this guidance recommends implementing either Geary'stest or the Lilliefors Kolmogorov-
Smirnoff test. Geary'stest is easy to apply and uses standard normal tables similar to Table A-1 of Appendix
A and widdly availablein standard textbooks. Lilliefors Kolmogorov-Smirnoff is more statistically powerful
but is also more difficult to apply and uses specialized tables not readily available.
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4.3 TESTSFOR TRENDS
43.1 Introduction

This section presents statistical tools for detecting and estimating trends in environmental data. The
detection and estimation of temporal or spatial trends are important for many environmental studies or
monitoring programs. In cases where temporal or spatial patterns are strong, smple procedures such astime
plots or linear regression over time can reveal trends. |n more complex situations, sophisticated statistical
models and procedures may be needed. For example, the detection of trends may be complicated by the
overlaying of long- and short-term trends, cyclicd effects (e.g., seasonal or weekly systematic variations),
autocorrelations, or impulses or jumps (e.g., due to interventions or procedural changes).

The graphical representations of Chapter 2 are recommended as the first step to identify possible
trends. A plot of the data versustime is recommended for temporal data, as it may reveal long-term trends
and may also show other major types of trends, such as cyclesor impulses. A posting plot is recommended
for spatial datato reveal spatial trends such as areas of high concentration or areas that were inaccessible.

For most of the statistical tools presented below, the focus is on monotonic long-term trends (i.e., a
trend that is exclusively increasing or decreasing, but not both), as well as other sources of systematic
variation, such as seasonality. The investigations of trend in this section are limited to one-dimensional
domains, eg., trendsin a pollutant concentration over time. The current edition of this document does not
address spatial trends (with 2- and 3-dimensional domains) and trends over space and time (with 3- and 4-
dimensiona domains), which may involve sophisticated geostatistical techniques such as kriging and require
the assistance of agtatistician. Section 4.3.2 discusses estimating and testing for trends using regression
techniques. Section 4.3.3 discusses more robust trend estimation procedures, and section 4.3.4 discusses
hypothesis tests for detecting trends under several types of situations.

432 Regresson-Based Methodsfor Estimating and Testing for Trends
4.3.2.1 Estimatinga Trend Using the Slope of the Regression Line

The classic procedures for ng linear trendsinvolve regression. Linear regressionisa
commonly used procedure in which calculations are performed on a data set containing pairs of observations
(X;, Y)), so asto obtain the dope and intercept of alinethat “best fits’ the data. For temporal trends, the X
values represent time and the Y ; val ues represent the observations, such as contaminant concentrations. An
estimate of the magnitude of trend can be obtained by performing a regression of the data versus time (or
some function of the data versus some function of time) and using the slope of the regression line asthe
measure of the strength of the trend.

Regression procedures are easy to apply; most scientific calculators will accept data entered as pairs
and will calculate the slope and intercept of the best fitting line, aswell as the correlation coefficient r (see
section 2.2.4). However, regression entails several limitations and assumptions. First of al, smple linear
regression (the most commonly used method) is designed to detect linear relationships between two variables,
other types of regression models are generally needed to detect non-linear relationships such as cyclical or
non-monatonic trends. Regression is very sensitive to extreme values (outliers), and presents difficultiesin
handling data below the detection limit, which are commonly encountered in environmental studies.
Regression also relies on two key assumptions: normally distributed errors, and constant variance. It may be
difficult or burdensome to verify these assumptionsin practice, so the accuracy of the slope estimate may be

EPA QA/G-9 43-1 QA96



suspect. Moreover, the analyst must ensure that time plots of the data show no cyclical patterns, outlier tests
show no extreme data values, and data validation reportsindicate that nearly al the measurements were
above detection limits. Because of these drawbacks, regression is not recommended as a general tool for
estimating and detecting trends, although it may be useful as an informal, quick, and easy screening tool for
identifying strong linear trends.

4.3.2.2 Testingfor TrendsUsing Regression M ethods

The limitations and assumptions associated with estimating trends based on linear regression
methods apply also to other regression-based statistical tests for detecting trends. Nonetheless, for situations
in which regression methods can be applied appropriately, there is a solid body of literature on hypothesis
testing using the concepts of statistical linear models as a basis for inferring the existence of temporal trends.
The methodology is complex and beyond the scope of this document.

For simple linear regression, the satistical test of whether the opeis significantly different from
zero is equivaent to testing if the correlation coefficient is significantly different from zero. Directions for
thistest are given in Box 4.3-1 along with an example. Thistest assumes alinear relation between Y and X
with independent normally distributed errors and constant variance acrossall X and Y values. Censored
values (e.g., below the detection limit) and outliers may invalidate the tests.

Box 4.3-1: Directions for the Test for a Correlation Coefficient
and an Example

Directions

STEP 1: Calculate the correlation coefficient, r (section 2.2.4).

STEP 2: Calculate the t-value t = r
1-r?
n-2

STEP 3: Use Table A-1 of Appendix A to find the critical value t_,, such that 100(1-a/2)% of the t
distribution with n - 2 degrees of freedom is below t_,. For example, ifa =0.10 and n = 17, then
n-2 =15 and t,,, = 1.753. Conclude that the correlation is significantly different from zero if
1> t, .

Example: Consider the following data set (in ppb): for Sample 1, arsenic (X) is 4.0 and lead (Y) is 8.0; for
Sample 2, arsenic is 3.0 and lead is 7.0; for Sample 3, arsenic is 2.0 and lead is 7.0; and for Sample 4,
arsenic is 1.0 and lead is 6.0.

STEP 1: In section 2.2.4, the correlation coefficient r for this data was calculated to be 0.949.

STEP 2: t = ————— =426

STEP 3: Using Table A-1 of Appendix A, t,,, = 2.920 for a 10% level of significance and 4-2 = 2 degrees
of freedom. Therefore, there appears to be a significant correlation between the two variables
lead and arsenic.
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433 Genera Trend Estimation Methods
4.3.3.1 Sen'sSlope Estimator

Sen's Slope Estimate is a nonparametric alternative for estimating aslope. This approach involves
computing slopesfor al the pairs of ordinal time points and then using the median of these dopesasan
estimate of the overdl slope. Assuch, itisinsensitive to outliers and can handle a moderate number of
values below the detection limit and missing values. Assume that there are n time points (or n periods of
time), and let X, denote the data value for thei ™ time point. If there are no missing data, there will be n(n-1)/2
possible pairs of time points (i, j) inwhichi >j. The sope for such apairiscaled apairwisesope, b ;, andis
computed asb;; = (X; - X;) / (i - J). Sen'sslope estimator is then the median of the n(n-1)/2 pairwise slopes.

If thereis no underlying trend, then agiven X ; isaslikely to be above another X ; asit is below.
Hence, if there is no underlying trend, there would be an approximately equal number of positive and negative
slopes, and thus the median would be near zero. Due to the number of calculations required, Sen’s estimator
israrely caculated by hand and directions are not given in this document. However, the estimator is
contained in the DQA DataQUEST software package (QA/G-9D, 1996).

4.3.3.2 Seasonal Kendall Slope Estimator

If the data exhibit cyclic trends, then Sen's dope estimator can be modified to account for the cycles.
For example, if data are available for each month for a number of years, 12 separate sets of dopeswould be
determined (one for each month of the year); similarly, if daily observations exhibit weekly cycles, seven sats
of dopeswould be determined, one for each day of theweek. In these estimates, the above pairwise dopeis
calculated for each time period and the median of all of the Sopesis an estimator of the slope for along-term
trend. Thisisknown asthe seasona Kendall dope estimator. Because of the number of calculations
required, this estimator israrely calculated by hand so directions are not given in thisdocument. The
seasond Kendall dope estimator is contained in the DataQUEST software package (QA/G-9D, 1996).

434 Hypothesis Testsfor Detecting Trends

Most of the trend teststreated in this section involve the Mann-Kendall test or extensions of it. The
Mann-Kendall test does not assume any particular distributional form and accommodates trace values or
values below the detection limit by assigning them acommon value. Thetest can aso be modified to ded
with multiple observations per time period and generalized to deal with multiple sampling locations and
seasonality.

4.3.4.1 OneObservation per Time Period for One Sampling L ocation

The Mann-Kendall test involves computing a statistic S, which isthe difference between the number
of pairwise sopes (as described in 4.3.3.1) that are positive minus the number that are negative. If Sisa
large positive value, then there is evidence of anincreasing trend in the data. If Sisalarge negative value,
then there is evidence of adecreasing trend in the data. The null hypothesis or basdline condition for thistest
isthat there is no temporal trend in the datavalues, i.e., “H ,: notrend’. The alternative condition or
hypothesis will usualy be either “H ,: upward trend” or “H ,: downward trend.”

The basic Mann-Kendall trend test involves listing the observationsin temporal order, and
computing all differences that may be formed between measurements and earlier measurements, as depicted
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in Box 4.3-2. Thetest statistic isthe difference between the number of strictly positive differences and the
number of gtrictly negative differences. If there is an underlying upward trend, then these differences will
tend to be positive and a sufficiently large value of the test statistic will suggest the presence of an upward
trend. Differencesof zero are not included in the test statistic (and should be avoided, if possible, by
recording data to sufficient accuracy). The steps for conducting the Mann-Kendall test for small sample sizes
(i.e., lessthan 10) are contained in Box 4.3-3 and an exampleis contained in Box 4.3-4.

For sample sizes greater than 10, anormal approximation to the Mann-Kendall test is quite accurate.
Directions for this approximation are contained in Box 4.3-5 and an exampleis givenin Box 4.3-6. Tied
observations (i.e., when two or more measurements are equal) degrade the statistical power and should be
avoided, if possible, by recording the data to sufficient accuracy.

Box 4.3-2: “Upper Triangular” Data for Basic Mann-Kendall Trend Test

with a Single Measurement at Each Time Point

Data Table
Original Time t; t, ts t, ts t, (time from earliest to latest)
Measurements X, X, X, X, Xy X, (actual values recorded)
Xl Xz'xl X3'X1 X4'X1 Xn-l'xl Xn'xl
Xz X3'X2 X4'X2 Xn-l'xz Xn'xz
Xn-z Xn-l'xn-z Xn'xn-z
Xn-l Xn'xn-l
After performing the subtractions this table converts to:
Original Time t, t, ts t, C tha t, # of + # of -
Measurements X: X, X, X, C Xna X, Differences Differences
0) (<0)
Xl Y21 Y31 Y41 Y(n-l)l Ynl
X2 Y32 Y42 Y(n-l)Z YnZ
Xn-z Y(n-l)(n-2) Yn(n»z)
Xn-l Yn (-1
NOTE: X;-Y,=0 do not contribute to either total and are discarded. Total # >0 Total # <0
where Y, = sign (X-X) = + if X,- X, >0
=0 ifX-X.=0
= - ifX-X%X<0
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STEP 1:

STEP 2:

STEP 3:

STEP 4:

STEP 5:

If the sample size is less than 10 and there is only one datum per time period, the Mann-Kendall Trend Test for
small sample sizes may be used.

Box 4.3-3: Directions for the Mann-Kendall Trend Test for Small Sample Sizes

List the data in the order collected over time: X, X,, ..., X,, where X; is the datum at time t. Assign a
value of DL/2 to values reported as below the detection limit (DL). Construct a “Data Matrix” similar to
the top half of Box 4.3-2.

Compute the sign of all possible differences as shown in the bottom portion of Box 4.3-2.

Compute the Mann-Kendall statistic S, which is the number of positive signs minus the number of
negative signs in the triangular table: S = (number of + signs) - (humber of - signs).

Use Table A-11 of Appendix A to determine the probability p using the sample size n and the absolute
value of the statistic S. For example, if n=5 and S=8, p=0.042.

For testing the null hypothesis of no trend against H, (upward trend), reject H, if S > 0 and if p < a.
For testing the null hypothesis of no trend against H, (downward trend), reject H, if S <0 and if p < &.

level.

Consider 5 measurements ordered by the time of their collection: 5, 6, 11, 8, and 10. This data will be used to test
the null hypothesis, H,: no trend, versus the alternative hypothesis H, of an upward trend at an a = 0.05 significance
STEP 1:

STEP 2:

STEP 3:
STEP 4:

STEP 5:

Box 4.3-4: An Example of Mann-Kendall Trend Test for Small Sample Sizes

The data listed in order by time are: 5, 6, 11, 8, 10.

A triangular table (see Box 4.3-2) was used to construct the possible differences. The sum of signs of
the differences across the rows are shown in the columns 7 and 8.

Time 1 2 3 4 5 No.of + No. of
Data 5 6 11 8 10 Signs - Signs
5 + + + + 4 0

6 + + + 3 0

11 - - 0 2

8 + 1 0

8 2

Using the table above, S=8-2 =6.
From Table A-11 of Appendix Aforn=5and S =6, p =0.117.

Since S >0 but p =0.117 « 0.05, the null hypothesis is not rejected. Therefore, there is not enough
evidence to conclude that there is an increasing trend in the data.
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Box 4.3-5: Directions for the Mann-Kendall Procedure Using Normal Approximation
If the sample size is 10 or more, a normal approximation to the Mann-Kendall procedure may be used.

STEP 1: Complete steps 1, 2, and 3 of Box 4.3-3.
n(n-1)(2n+5)
18 '

If ties occur, let g represent the number of tied groups and w;, represent the number of data points in the

p™ group. The variance of Sis:V(S) = 1_18 [n(n-1)(2n+5) - i Wp(Wp—l)(ZWp+5)]
p-1

STEP 2:  Calculate the variance of S: V(S) =

Sl iss0z=0ifs=0 0zt

[V(s)1* [V(s)1*

STEP 5: Use Table A-1 of Appendix A to find the critical value z_, such that 100(1-a)% of the normal distribution
is below z,,. For example, if a=0.05 then z, ,=1.645.

STEP 4: Calculate Z= if S<0.

STEP 6: For testing the hypothesis, H, (no trend) against 1) H, (an upward trend) — reject H, if Z is greater than
Z1.4, O 2) H, (a downward trend) — reject H, if Z < 0 and the absolute value of Z is greater than z_,.

Box 4.3-6: An Example of Mann-Kendall Trend Test by Normal Approximation
A test for an upward trend with a=.05 will be based on the 11 weekly measurements shown below.

STEP 1: Using Box 4.3-2, a triangular table was used to construct the possible differences. A zero has been used
if the difference is zero, a “+” sign if the difference is positive, and a “-” sign if the difference is negative.

Week 1 2
Data 10 10
10
10
10 -
5
10
20
18
17
15
24

4 5
5 10

10 11 No. of No. of

24 15 +Signs - Signs
+

o

.
+ o000

I
+++++0o

I
D+ + 4+ + o~
15
D+t + N
+ + + +

|I—‘
oo+ + + + + o ©
+

+ 4+ + ++++ o+

[y
whhoNvwroOoOR R R

.
w
dlorrrrovo oo

STEP 2: S =(sum of + signs) - (sum of - signs) = 35 - 13 =22

STEP 3: There are several observations tied at 10 and 15. Thus, the formula for tied values will be used. In this
formula, g=2, t,=4 for tied values of 10, and t,=2 for tied values of 15.

v - 1_18 [11(11-1)(2(11)+5) - [4(4-1)(2(4)+5) + 2(2-1)(2(2)+5)]] = 155.33
STEP 4: Since S is positive: Z = S1 2271 20
[V(91*  (155.33)% 1246

STEP 5: From Table A-1 of Appendix A, z,_,s=1.645.

1.605

STEP 6: H, is the alternative of interest. Therefore, since 1.605 is not greater than 1.645, H, is not rejected.
Therefore, there is not enough evidence to determine that there is an upward trend.
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4.3.4.2 Multiple Observations per Time Period for One Sampling L ocation

Often, more than one sampleis collected for each time period. There are two waysto deal with
multiple observations per time period. One method isto compute asummary statistic, such asthe median,
for each time period and to apply one of the Mann-Kendall trend tests of section 4.3.4.1 to the summary
statistic. Therefore, instead of using the individual data pointsin the triangular table, the summary statistic
would be used. Then the steps givenin Box 4.3-3 and 4.3-5 could be applied to the summary statistics.

An alternative approach isto consider all the multiple observations within a given time period as
being essentially equal (i.e., tied) values within that period. The S statistic is computed as before with n
being the total of al observations. The variance of the S gtatistic (previoudly calculated in step 2) is changed
to:

: h
VARS = - |n(n-1)(2n+5) - D Wo(W,-1)(2w,+5) - Y ug(u-1)(2u,+5)
18 p-1 a-1

g h g h
pZ;wp(wp—l)(wp—Z)qZ; Uy (Ug=1) (Uy-2) pX; W, (w,-1) qX; Ug (Ug-2)

9n(n-1)(n-2) 2n(n-1)

where g represents the number of tied groups, w , represents the number of data pointsin the p " group, his
the number of time periods which contain multiple data, and u  isthe samplesizeintheq " time period.

The preceding variance formula assumes that the data are not correlated. If correlation within single
time periods is suspected, it is preferable to use a summary satistic (e.g., the median) for each time period
and to then apply either Box 4.3-3 or Box 4.3-5 to the summary datistics.

4.3.4.3 Multiple Sampling L ocations with M ultiple Observations

The preceding methods involve a single sampling location (station). However, environmental data
often consist of sets of data collected at several sampling locations (see Box 4.3-7). For example, dataare
often systematically collected at several fixed siteson alake or river, or within aregion or basin. The data
collection plan (or experimental design) must be systematic in the sense that approximately the same
sampling times should be used at al locations. In thissituation, it is desirable to express the results by an
overal regional summary statement across all sampling locations. However, there must be consistency in
behavioral characteristics across sites over time in order for asingle summary statement to be valid across all
sampling locations. A useful plot to assess the consistency requirement isa single time plot (section 2.3.8.1)
of the measurements from all stations where a different symbol is used to represent each station.

If the stations exhibit approximately steady trendsin the same direction (upward or downward), with
comparable dopes, then asingle summary statement across stationsis valid and thisimplies two relevant sets
of hypotheses should be investigated:

Compar ability of stations. H,: Similar dynamics affect al K stationsvs. H ,: At least two stations
exhibit different dynamics.

Testing for overall monotonictrend. Hy*: Contaminant levels do not change over timevs.
H," Thereisan increasing (or decreasing) trend consistently exhibited across all stations.
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Therefore, the analyst must first test for homogeneity of stations, and then, if homogeneity is confirmed, test
for an overall monotonic trend.

Idedlly, the stations in Box 4.3-7 should have equal numbers. However, the numbers of observations
at the stations can differ dightly, because of isolated missing values, but the overall time periods spanned
must be similar. This guidance recommends that for less than 3 time periods, an equal number of
observations (abalanced design) isrequired. For 4 or more time periods, up to 1 missing value per sampling
location may be tolerated.

a. OneObservation per TimePeriod. When only one measurement is taken for each time period
for each station, a generalization of the Mann-Kendall statistic can be used to test the above hypotheses. This
procedure is described in Box 4.3-8.

b. Multiple Observationsper TimePeriod. [If multiple measurements are taken at sometimesand
station, then the previous approaches are still applicable. However, the variance of the statistic S |, must be
calculated using the equation for calculating V(S) given in section 4.3.4.2. Notethat S |, iscomputed for each
station, so n, W, 0, h, and Uq are al station-specific.

Box 4.3-7: Data for Multiple Times and Multiple Stations

Leti=1, 2, ..., nrepresenttime, k=1, 2, ..., K represent sampling locations, and X,
represent the measurement at time i for location k. This data can be summarized in
matrix form, as shown below.

Stations
1 2 K
1 Xll X12 XlK
2 X21 X22 XZK
Time .
n Xy X X
S, S, Sk
V(Sy) V(S,) V(Sk)
Z, Z, . Zy

where S, = Mann-Kendall statistic for station k (see STEP 3, Box 4.3-3),
V(S,) = variance for S statistic for station k (see STEP 2, Box 4.3-5), and

2= S/VARS,)
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STEP 1:

STEP 2:

STEP 3:

STEP 4:

STEP 5:

STEP 6:

STEP 7:

Box 4.3-8: Testing for Comparability of Stations and an Overall Monotonic Trend

Leti=1, 2, .., nrepresenttime, k=1, 2, ..., K represent sampling locations, and X, represent the measurement
at time i for location k. Leta represent the significance level for testing homogeneity anda* represent the
significance level for testing for an overall trend.

Calculate the Mann-Kendall statistic S, and its variance V(S,) for each of the K stations using the
methods of section 4.3.4.1, Box 4.3-5.

For each of the K stations, calculate Z, = S /,/V(S).

Calculate the average Z - Z Z K.
k=1

K
L - -
Calculate the homogeneity chi-square statistic Xﬁ = Z Zk2 - K Z~

k=1
Using a chi-squared table (Table A-8 of Appendix A), find the critical value forx? with (K-1) degrees
of freedom at an a significance level. For example, for a significance level of 5% and 5 degrees of
freedom, X% 5, = 11.07, i.e., 11.07 is the cut point which puts 5% of the probability in the upper tail of
a chi-square variable with 5 degrees of freedom.

If X3 <X%«.1) there are comparable dynamics across stations at significance levela. Go to Step 7.

If X3 > X%« .1 the stations are not homogeneous (i.e., different dynamics at different stations) at the
significance level a. Therefore, individual a*-level Mann-Kendall tests should be conducted at each
station using the methods presented in section 4.3.4.1.

Using a chi-squared table (Table A-8 of Appendix A), find the critical value forx? with 1 degree of
freedom at an « significance level. If

=52 2
then reject Hy* and conclude that there is a significant (upward or downward) monotonic trend

across all stations at significance levela*. The signs of the S, indicate whether increasing or
decreasing trends are present. If

—2 2
KZ" < X(l),

there is not significant evidence at the &' level of a monotonic trend across all stations. That is, the
stations appear approximately stable over time.

4.3.4.4 OneObservation for One Station with Multiple Seasons

Tempora data are often collected over extended periods of time. Within the time variable, data may
exhibit periodic cycles, which are patternsin the data that repeat over time (e.g., the datamay rise and fall
regularly over the monthsin ayear or the hoursin aday). For example, temperature and humidity may
change with the season or month, and may affect environmental measurements. (For more information on
seasonal cycles, see section 2.3.8). In the following discussion, the term season represents one time point in
the periodic cycle, such as amonth within ayear or an hour within aday.
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If seasonal cycles are anticipated, then two approaches for testing for trends are the seasonal Kendall
test and Sen'stest for trends. The seasonal Kendall test may be used for large sample sizes, and Sen'stest for
trends may be used for small sample sizes. If different seasons manifest similar sopes (rates of change) but
possibly different intercepts, then the Mann-Kendall technique of section 4.3.4.3 is applicable, replacing time
by year and replacing station by season.

The seasonal Kendall test, which is an extension of the Mann-Kendall test, involves calculating the
Mann-Kendall test statistic, S, and its variance separately for each “season” (e.g., month of the year, day of
theweek). The sum of the Ssand the sum of their variances are then used to form an overall test satistic
that is assumed to be approximately normally distributed for larger size samples.

For data at asingle site, collected at multiple seasons within multiple years, the techniques of
section 4.3.4.3 can be applied to test for homogeneity of time trends across seasons. The methodology
follows Boxes 4.3-7 and 4.3-8 exactly except that “ station” is replaced by “season” and the inferences refer
to seasons.

435 A Discussion on Testsfor Trends

This section discusses some further considerations for choosing among the many tests for trends. Al
of the nonparametric trend tests and estimates use ordinal time (ranks) rather than cardinal time (actual time
values, such as month, day or hour) and this restricts the interpretation of measured trends. All of the Mann-
Kendal (MK) Trend Tests presented are based on certain pairwise differences in measurements at different
time points. The only information about these differencesthat is used in the MK caculationsistheir signs
(i.e, whether they are positive or negative) and therefore are generalizations of the sign test. MK calculations
are relatively easy and smply involve counting the number of casesinwhich X ;. ; exceeds X; and the number
of casesin which X; exceeds X, ;. Information about magnitudes of these differencesis not used by MK
methods and this can adversdly affect the satistical power when only limited amounts of data are available.

There are, however, nonparametric methods based on ranks that takes such magnitudesinto account
and till retains the benefit of robustnessto outliers. These procedures can be thought of as replacing the data
by their ranks and then conducting parametric analyses. These include the Wilcoxon rank sum test and its
many generalizations. These methods are more resistant to outliers than parametric methods; a point can be
no more extreme than the smallest or largest value.

Rank-based methods, which make fuller use of the information in the data than MK methods, are not
as robust with respect to outliers asthe sign and MK tests. They are, however, more statistically powerful
than the sign test and MK methods; the Wilcoxon test being acase in point. If the data are random samples
from normal distributions with equal variances, then the sign test requires approximately 1.225 times as
many observations as the Wilcoxon rank sum test to achieve agiven power a a given significancelevel. This
kind of tradeoff between power and robustness exemplifies the analyst's evaluation process leading to the
selection of the best statistical procedure for the current situation. Further statistical testswill be developed
in future editions of this guidance.
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4.4 OUTLIERS
441 Background

Outliers are measurements that are extremely large or small relative to the rest of the data and,
therefore, are suspected of misrepresenting the population from which they were collected. Outliers may
result from transcription errors, data-coding errors, or measurement system problems such as instrument
breakdown. However, outliers may also represent true extreme values of a distribution (for instance, hot
spots) and indicate more variahility in the population than was expected. Not removing true outliers and
removing false outliers both lead to a distortion of estimates of population parameters.

Statistical outlier tests give the analyst probabilistic evidence that an extreme value (potential outlier)
does not “fit” with the distribution of the remainder of the data and istherefore a statistical outlier. These
tests should only be used to identify data points that require further investigation. The tests alone cannot
determine whether a statistical outlier should be discarded or corrected within a data set; this decision should
be based on judgmental or scientific grounds..

There are 5 stepsinvolved in treating extreme values or outliers:

1. Identify extreme valuesthat may be potential outliers,

2. Apply dtatistical test;

3. Scientifically review statistical outliers and decide on their disposition;
4, Conduct data analyses with and without statistical outliers; and

5. Document the entire process.

Potential outliers may be identified through the graphical representations of Chapter 2 (step 1 above).
Graphs such as the box and whisker plot, ranked data plot, normal probability plot, and time plot can all be
used to identify observationsthat are much larger or smaller than the rest of the data. If potential outliers are
identified, the next step isto apply one of the statistical tests described in the following sections. Section
4.4.2 provides recommendations on selecting a statistical test for outliers.

If adata point isfound to be an outlier, the analyst may either: 1) correct the data point; 2) discard
the data point from analysis; or 3) use the datapoint in al analyses. This decision should be based on
scientific reasoning in addition to the results of the statitical test. For instance, data points containing
transcription errors should be corrected, whereas data points collected while an instrument was
malfunctioning may be discarded. One should never discard an outlier based solely on adtatistical test.
Instead, the decision to discard an outlier should be based on some scientific or quality assurance basis.
Discarding an outlier from adata set should be done with extreme caution, particularly for environmental data
sets, which often contain legitimate extreme values. If an outlier is discarded from the data set, dl statistical
analysis of the data should be applied to both the full and truncated data set so that the effect of discarding
observations may be assessed. If scientific reasoning does not explain the outlier, it should not be discarded
from the data set.

If any data points are found to be statistical outliers through the use of a statistical te<t, this
information will need to be documented along with the analysis of the data set, regardless of whether any data
points are discarded. If no data points are discarded, document the identification of any “statistical” outliers
by documenting the statistical test performed and the possible scientific reasons investigated. If any data
points are discarded, document each data point, the statistical test performed, the scientific reason for
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discarding each data point, and the effect on the analysis of deleting the data points. Thisinformation is
critical for effective peer review.

442 Selection of a Statistical Test
There are several dtatistical tests for determining whether or not one or more observations are

statistical outliers. Step by step directions for implementing some of these tests are described in sections
4.4.3 through 4.4.6. Section 4.4.7 describes statistical tests for multivariate outliers.

Sample Assumes Multiple Data-
Size Test Section | Normality | Outliers | QUEST
n<?25 | ExtremeVaueTest 443 Yes No/Yes Yes
n< 50 | Discordance Test 444 Yes No Yes
n>25 | Rosner's Test 445 Yes Yes Yes
n>50 | Wash'sTest 4.4.6 No Yes Yes

Table4.4-1. Recommendations for Selecting a Statistical Test for Outliers

If the data are normally distributed, this guidance recommends applying Rosner'stest (Box 4.4-5)
when the sample size is greater than 25 and the Extreme Vauetest (Box 4.4-1) when the sample sizeisless
than 25. If only one outlier is suspected, then the Discordance test (Box 4.4-3) may be substituted for either
of thesetests. If the data are not normally distributed, or if the data cannot be transformed so that the
transformed data are normally distributed, then the analyst should either apply a nonparametric test (such as
Walsh'stest in Box 4.4-7) or consult a statistician.

443 ExtremeValueTest (Dixon's Test)

Dixon's Extreme Vaue test can be used to test for statistical outliers when the sample sizeisless
than or equal to 25. Thistest considers both extreme values that are much smaller than the rest of the data
(case 1) and extreme values that are much larger than the rest of the data (case 2). Thistest assumesthat the
data without the suspected outlier are normally distributed; therefore, it is necessary to perform atest for
normality on the data without the suspected outlier before applying thistest. If the data are not normally
distributed, either transform the data, apply a different test, or consult a statistician. Directionsfor the
Extreme Vauetest are contained in Box 4.4-1; an example of thistest is contained in Box 4.4-2. The
Extreme Vauetest is contained in the DQA DataQUEST software package (QA/G-9D, 1996).

This guidance recommends using this test when only one outlier is suspected inthe data. If more
than one outlier is suspected, the Extreme Vaue test may lead to masking where two or more outliers closein
value “hide’ one another. Therefore, if the analyst decides to use the Extreme Value test for multiple outliers,
apply the test to the least extreme value first.
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Box 4.4-1: Directions for the Extreme Value Test
(Dixon's Test)

STEP 1: Let X(1), X2y - - -, X(n) represent the data ordered from smallest to largest. Check that the data
without the suspect outlier are normally distributed, using one of the methods of section 4.2. If
normality fails, either transform the data or apply a different outlier test.

STEP 2: X(1)is a Potential Outlier (case 1): Compute the test statistic C, where

X, - X X = X
c=-_3® @ for3<n <7, C=Mforllgngl3,
X(n) - X(l) X(n-l) N
X =X X = X
C=—2_ "1 fygn<10, C=—__"D for14<n<25
X(n-l) N (n-2)  “X1)
STEP 3: If C exceeds the critical value from Table A-3 of Appendix A for the specified significance levelx,

X(1) is an outlier and should be further investigated.

STEP 4: X(nyds a Potential Outlier (case 2). Compute the test statistic C, where

X - X X - X
c =2 (1) for3<n-< 7, C = (n) ("2 for11<n < 13,
X(n) - X(l) X(n) - X(Z)
X - X X - X
C=-W "0 f5rg.nc10, C=0 "2 5594025
X(n) - X(Z) X(n) - X(3)
STEP 5: If C exceeds the critical value from Table A-3 of Appendix A for the specified significance levelx,

X(nyis an outlier and should be further investigated.

Box 4.4-2: An Example of the Extreme Value Test
(Dixon's Test)

The data in order of magnitude from smallest to largest are: 82.39, 86.62, 91.72, 98.37, 103.46, 104.93,
105.52, 108.21, 113.23, and 150.55 ppm. Because the largest value (150.55) is much larger than the other
values, it is suspected that this data point might be an outlier.

STEP 1: A normal probability plot of the data shows that there is no reason to suspect that the data (without
the extreme value) are not normally distributed. The studentized range test (section 4.2.6) also
shows that there is no reason to suspect that the data are not normally distributed. Therefore, the
Extreme Value test may be used to determine if the largest data value is an outlier.

Xy = Xn-1y _ 150.55 - 11323 _ 37.32

(n -
Xy = X2 150.55 - 86.62 63.93

STEP 4: C = = 0.584

STEP 5. Since C =0.584 > 0.477 (from Table A-3 of Appendix A with n=10), there is evidence that X, is
an outlier at a 5% significance level and should be further investigated.
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444 Discordance Test

The Discordance test can be used to test if one extreme valueisan outlier. Thistest considerstwo
cases. 1) where the extreme value (potential outlier) isthe smallest value of the data set, and 2) where the
extreme value (potential outlier) isthe largest value of the data set. The Discordance test assumes that the
data are normally distributed; therefore, it is necessary to perform atest for normality before applying this
test. If the dataare not normally distributed either transform the data, apply adifferent test, or consult a
statistician. Note that the test assumes that the data without the outlier are normally distributed; therefore,
the test for normality should be performed without the suspected outlier. Directions and an example of the
Discordance test are contained in Box 4.4-3 and 4.4-4, respectively. Table A-4 of Appendix A contains
critical valuesfor thistest forn < 50.

STEP 1:

STEP 2:

STEP 3:

STEP 4:

STEP 5:

STEP 6:

Box 4.4-3: Directions for the Discordance Test

Let X1y X2y - - - » X(n) represent the data ordered from smallest to largest. Check that the data
without the suspect outlier are normally distributed, using one of the methods of section 4.2. If
normality fails, either transform the data or apply a different outlier test.

Compute the sample mean, X (section 2.2.2), and the sample standard deviation, s (section 2.2.3).

If the minimum value X, , is a suspected outlier, perform Steps 3 and 4. If the maximum value X,
is a suspected outlier, perform Steps 5 and 6.

If X, ,is a Potential Outlier (case 1): Compute the test statistic D =

If D exceeds the critical value from Table A-4, X, is an outlier and should be further investigated.

X(n)

If X, is a Potential Outlier (case 2): Compute the test statistic D =
S

If D exceeds the critical value from Table A-4, X, is an outlier and should be further investigated.

The ordered data are 82.39, 86.62, 91.72, 98.37, 103.46, 104.93, 105.52, 108.21, 113.23, and 150.55 ppm.
Because the largest value of this data set (150.55) is much larger than the rest, it may be an outlier.

Box 4.4-4: An Example of the Discordance Test

STEP 1: A normal probability plot of the data shows that there is no reason to suspect that the data (without
the extreme value) are not normally distributed. The studentized range test (section 4.2.6) also
shows that there is no reason to suspect that the data are not normally distributed. Therefore, the
Discordance test may be used to determine if the largest data value is an outlier.

STEP 2: X =104.5 ppm and s = 18.922 ppm.

X=X .
sTEP5: D = - 15055 - 10450 _ 5 45
S 18.92

STEP 6: Since D =2.43 > 2.176 (from Table A-4 of Appendix A with n = 10), there is evidence that X,,, is
an outlier at a 5% significance level and should be further investigated.
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445 Rosne'sTest

A parametric test developed by Rosner can be used to detect up to 10 outliers for sample sizes of 25
or more. Thistest assumesthat the data are normally distributed; therefore, it is necessary to perform atest
for normality before applying thistest. If the data are not normally distributed either transform the data,
apply adifferent test, or consult astatistician. Note that the test assumes that the data without the outlier are
normally distributed; therefore, the test for normality may be performed without the suspected outlier.
Directions for Rosner'stest are contained in Box 4.4-5 and an example is contained in Box 4.4-6. Thistestis
also contained in the DQA DataQUEST software package (QA/G-9D, 1996).

Rosner'stest is not as easy to apply asthe preceding tests. To apply Rosner'stest, first determine an
upper limit r, on the number of outliers (r , < 10), then order the r , extreme va ues from most extreme to least
extreme. Rosner'stest gtatistic is then based on the sample mean and sample standard deviation computed
without ther =, extreme values. If thistest Satitic is greater than the critical value givenin Table A-5 of
Appendix A, there arer , outliers. Otherwise, thetest is performed again without ther =r - 1 extreme values.
This processis repeated until either Rosner'stest statistic is greater than the critical value or r = 0.

Box 4.4-5: Directions for Rosner's Test for Outliers

STEP 1: Let X;, X,, . . ., X, represent the ordered data points. By inspection, identify the maximum
number of possible outliers, r,. Check that the data are normally distributed, using one of the
methods of section 4.2.

STEP 2: Compute the sample mean X, and the sample standard deviation, s, forall the data. Label
these values X(°) and s'°), respectively. Determine the observation farthest fromx‘®’ and label
this observation y°). Delete y(°) from the data and compute the sample mean, labeledx*’, and
the sample standard deviation, labeled s*). Then determine the observation farthest fromx*)
and label this observation y*). Delete y(*) and compute X2’ and s®). Continue this process
until r, extreme values have been eliminated.

In summary, after the above process the analyst should have

(X, s, yO [x®, s0, y; (XY, sl y(0 D] ypere

. n ) n-i L
X - LZXA, s) = [%Z(xj—x('))z]ﬂz, and y'" is the farthest value

n-lj-1 -1

from X'"). (Note, the above formulas forx’and s’ assume that the data have been
renumbered after each observation is deleted.)

[y - x(r=1)
B 5(r-1)

STEP 3: To test if there are 'r' outliers in the data, compute: Rr and compare

R, to A, in Table A-5 of Appendix A. If R > A, conclude that there are r outliers.

First, test if there are r, outliers (compare Rr to )\.r ). If not, test if there are r,- 1 outliers
o-1 o-1

(compare Rr to )\.r ) If not, test if there are r,- 2 outliers, and continue, until either it is
o-1 o-1

determined that there are a certain number of outliers or that there are no outliers at all.
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STEP 1:

STEP 2:

STEP 3:

Box 4.4-6: An Example of Rosner's Test for Outliers

Consider the following 32 data points (in ppm) listed in order from smallest to largest: 2.07, 40.55,
84.15, 88.41, 98.84, 100.54, 115.37, 121.19, 122.08, 125.84, 129.47, 131.90, 149.06, 163.89,
166.77,171.91, 178.23, 181.64, 185.47, 187.64, 193.73, 199.74, 209.43, 213.29, 223.14,
225.12,232.72, 233.21, 239.97, 251.12, 275.36, and 395.67.

A normal probability plot of the data shows that there is no reason to suspect that the data
(without the suspect outliers) are not normally distributed. In addition, this graph identified four
potential outliers: 2.07, 40.55, 275.36, and 395.67. Therefore, Rosner's test will be applied to see
if there are 4 or fewer (r, = 4) outliers.

First the sample mean and sample standard deviation were computed for the entire data set &©
and s). Using subtraction, it was found that 395.67 was the farthest data point fromx®, so

y© =395.67. Then 395.67 was deleted from the data and the sample mean,x®, and the sample
standard deviation, s, were computed. Using subtraction, it was found that 2.07 was the farthest
value from X®. This value was then dropped from the data and the process was repeated again
on 40.55 to yield X®, s@, and y® and X, s®, and y®. These values are summarized below.

<) 5 v
169.923  75.133  395.67
162.640 63.872 2.07
167.993 57.460 40.55
172.387 53.099 275.36

wN kol

To apply Rosner's test, it is first necessary to test if there are 4 outliers by computing

R - ly® -x® _ |275.36 - 172.387|
4 NE) 53.099
and comparing R, to A, in Table A-5 of Appendix A with n = 32. Since R, = 1.939 3 A, = 2.89,
there are not 4 outliers in the data set. Therefore, it will next be tested if there are 3 outliers by
computing
|y(2) - )7(2)| _ |40.55 - 167.993| _
5@ 57.460

= 1.939

2.218

and comparing R; to A; in Table A-5 with n = 32. Since R; =2.218 » A; = 2.91, there are not 3
outliers in the data set. Therefore, it will next be tested if there are 2 outliers by computing

y® - x® _ |2.07 - 162.640]
SO 63.872

= 2.514

and comparing R, to A, in Table A-5 with n = 32. Since R, =2.514 3 A, = 2.92, there are not 2
outliers in the data set. Therefore, it will next be tested if there is 1 outlier by computing

_ ly©@ - XxO] _ |395.67 - 169.923
s© 75.133

= 3.005

and comparing R; to A, in Table A-5 with n = 32. Since R, = 3.005 > A\,= 2.94, there is evidence
at a 5% significance level that there is loutlier in the data set. Therefore, observation 355.67 is a
statistical outlier and should be further investigated.
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446 Walsh's Test

A nonparametric test was developed by Walsh to detect multiple outliersin adata set. Thistest
requires alarge sample size: n > 220 for a significance level ofx = 0.05, and n > 60 for a significance level
of « = 0.10. However, since the test is a nonparametric test, it may be used whenever the data are not
normally distributed. Directions for the test by Walsh for large sample sizes are given in Box 4.4-7. This
test is aso contained in the DQA DataQUEST software package (QA/G-9D, 1996).

Box 4.4-7: Directions for Walsh's Test for Large Sample Sizes

Let X1y X2y« s Xny represent the data ordered from smallest to largest. If < 60, do not apply this
test. If 60 <n< 220, thena =0.10. If n > 220, thena = 0.05.

STEP 1: Identify the number of possible outliers, r. Note that r can equal 1.

_h2 -
STEP2: Compute ¢ = [y2n], k = r + ¢, b? = 1/a, and a = 1+ by(c-b9/(c 1)_

c-b?-1

where [ ] indicates rounding the value to the largest possible interger (i.e., 3.24 becomes 4).

STEP 3:  The r smallest points are outliers (with a0% level of significance) if
Xy = (X)X, gy * @Xyy <0
STEP 4:  The r largest points are outliers (with ac% level of significance) if

Xo1-ry ~ Q@)X * @149 >0

STEP 5:  If both of the inequalities are true, then both small and large outliers are indicated.

44,7 Multivariate Outliers

Multivariate analysis, such as factor analysis and principal components analysis, involves the
analysis of several variables ssmultaneously. Ouitliersin multivariate analysis are then values that are
extreme in relationship to either one or more variables. Asthe number of variables increases, identifying
potential outliers using graphical representations becomes more difficult. In addition, specia procedures
are required to test for multivariate outliers. Details of these procedures are beyond the scope of this
guidance. However, procedures for testing for multivariate outliers are contained in the software package
Scout developed by the EPA's Environmental Monitoring Systems Laboratory in Las Vegas, Nevada
(EMSL-LV) and statistical textbooks on multivariate analysis.
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45 TESTSFOR DISPERSIONS

Many statistical tests make assumptions on the dispersion (as measured by variance) of data; this
section considers some of the most commonly used statistical tests for variance assumptions. Section 4.5.1
contains the methodology for constructing a confidence interval for asingle variance estimate from a sample.
Section 4.5.2 deals with the equality of two variances, akey assumption for the validity of atwo-sample
t-test. Section 4.5.3 describes Bartlett’ s test and section 4.5.4 describes Levene' stest. These two tests verify
the assumption that two or more variances are equal, a requirement for a standard two-sample t-test, for
example. The analyst should be aware that many statistical tests only require the assumption of approximate
equality and that many of these tests remain valid unless gross inequality in variances is determined.

451 Confidencelntervalsfor a Single Variance

This section discusses confidence intervals for a single variance or standard deviation for analysts
interested in the precision of variance estimates. Thisinformation may be necessary for performing a
sensitivity analysis of the statistical test or analysis method. The method described in Box 4.5-1 can be used
to find atwo-sided 100(1- «)% confidenceinterval. The upper end point of atwo-sided 100(1- «)%
confidence interval isa 100(1- «./2)% upper confidence limit, and the lower end point of atwo-sided
100(1- )% confidence interval isa 100(1- «/2)% lower confidence limit. For example, the upper end point
of a90% confidenceinterval is a 95% upper confidence limit and the lower end point is a 95% lower
confidence limit. Since the standard deviation isthe square root of the variance, a confidence interval for the
variance can be converted to a confidence interval for the standard deviation by taking the square roots of the
endpoints of theinterval. This confidence interval assumes that the data constitute arandom sample from a
normally distributed population and can be highly sensitive to outliers and to departures from normality.

452 TheF-Test for the Equality of Two Variances

An F-test may be used to test whether the true underlying variances of two populations are equal.
Usually the F-test isemployed as a preliminary test, before conducting the two-sample t-test for the equality
of two means. The assumptions underlying the F-test are that the two samples are independent random
samples from two underlying normal populations. The F-test for equality of variancesis highly sensitive to
departures from normality. Directions for implementing an F-test with an example are given in Box 4.5-2.

453 Bartlett'sTest for the Equality of Two or MoreVariances

Bartlett's test is ameans of testing whether two or more population variances of normal distributions
areequal. Inthe case of only two variances, Bartlett'stest is equivalent to the F-test. Often in practice
unequal variances and non-normality occur together and Bartlett'stest isitsalf sensitive to departures from
normality. With long-tailed distributions, the test too often rejects equality (homogeneity) of the variances.

Bartlett's test requires the calculation of the variance for each sample, then calculation of a statistic
associated with the logarithm of these variances. This statistic is compared to tables and if it exceedsthe
tabulated vaue, the conclusion is that the variances differ asacomplete set. It does not mean that oneis
significantly different from the others, nor that one or more are larger (smaller) than therest. It simply
implies the variances are unequal asagroup. Directionsfor Bartlett'stest are given in Box 4.5-3 and an
exampleisgivenin Box 4.5-4.
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Box 4.5-1: Directions for Constructing Confidence Intervals and
Confidence Limits for the Sample Variance and Standard Deviation with an Example

Directions: Let X, X,, . . ., X, represent the n data points.
STEP 1: Calculate the sample variance € (section 2.2.3).

STEP 2: For a 100(1-0)% two-sided confidence interval use Table A-8 of Appendix A to find the cutoffs
L and U such that L =x?,;, and U = X?; 4, With (n-1) degrees of freedom (lof).

(n-1)s? 0 (n-1)s?
-

STEP 3: A 100(1-a)% confidence interval for the true underlying variance is:

_ 2 _ 2
A 100(1-a)% confidence interval for the true standard deviation is:\' (n E')S to\' (n 3)5 .

Example: Ten samples were analyzed for lead: 46.4, 46.1, 45.8, 47, 46.1, 45.9, 45.8, 46.9, 45.2, 46 ppb.
STEP 1: Using section 2.2.3, ¢ = 0.286.

STEP 2: Using Table A-8 of Appendix A and 9dof, L = X? o5/, = X% 025 = 19.02 and U =X%;_gs12) = X075 = 2.70.
(10-1)0.286 to (10-1)0.286
19.02 2.70

A 95% confidence interval for the standard deviation is3/0.135=.368 to /0.954 =.977.

STEP 3: A 95% confidence interval for the variance is: or 0.135 to 0.954.

Box 4.5-2: Directions for Calculating an F-Test to Compare
Two Variances with an Example

Directions: Let X, X,, . . ., X, represent the m data points from population 1 and Y, Y,, . .., Y,
represent the n data points from population 2. To perform an F-test, proceed as follows.

STEP 1: Calculate the sample variances §? (for the X's) and s, (for the Y's ) (section 2.2.3).

STEP 2:  Calculate the variance ratios F, = s,%/s,” and F, = s,%/s,®. Let F equal the larger of these two
values. IfF=F,thenletk=m-landg=n-1. IfF=Fthenletk=n-landgq=m- 1.

STEP 3: Using Table A-9 of Appendix A of the F distribution, find the cutoff U 5§ ,(k, q). If F > U,
conclude that the variances of the two populations are not the same.

Example: Manganese concentrations were collected from 2 wells. The data are Well X: 50, 73, 244,
and 202 ppm; and Well Y: 272, 171, 32, 250, and 53 ppm. An F-test will be used to determine if the
variances of the two wells are equal.

STEP 1: For Well X, s> =9076. For Well Y, s?=12125.

STEP 2: F,=5s,%s,2=9076/12125=0.749. R, =s,%/s,®>=12125/ 9076 = 1.336. Since, k> F,,
F=F=1336,k=5-1=4andq=4-1=3.

STEP 3: Using Table A-9 of Appendix A of the F distribution withox = 0.05, L = f_,5,( 4, 3) = 15.1.
Since 1.336 < 15.1, there is no evidence that the variability of the two wells is different.
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Box 4.5-3: Directions for Bartlett's Test

Consider k groups with a sample size of n for each group. Let N represent the total number of samples, i.e.,
letN=n,+n,+...+n,. Forexample, consider two wells where 4 samples have been taken from well 1 and
3 samples have been taken from well 2. Inthiscase,k=2,n=4,n,=3,andN=4+3=7.

STEP 1: For each of the k groups, calculate the sample variances, & (section 2.2.3).
k
i 2 1 2
STEP 2: Compute the pooled variance across groups: S = m Z (ni - 1)&3
- i=1

k
STEP 3:  Compute the test statistic: TS = (N - K) In(sz) - Z(ni—l) In(Sﬁz)
i=1

where “In” stands for natural logarithms.

STEP 4: Using a chi-squared table (Table A-8 of Appendix A), find the critical value forx? with (k-1)
degrees of freedom at a predetermined significance level. For example, for a significance level of
5% and 5 degrees of freedom, x*> = 11.1. If the calculated value (TS) is greater than the
tabulated value, conclude that the variances are not equal at that significance level.

Box 4.5-4: An Example of Bartlett's Test

Manganese concentrations were collected from 6 wells over a 4 month period. The data are shown in the following
table. Before analyzing the data, it is important to determine if the variances of the six wells are equal. Bartlett's test
will be used to make this determination.

STEP 1: For each of the 6 wells, the sample means and variances were calculated. These are shown in the
bottom rows of the table below.

Sampling Date Well 1 Well 2 Well 3 Well 4 Well 5 Well 6
January 1 50 272
February 1 73 171 68
March 1 244 46 32 34 48 991
April 1 202 77 53 3940 54 54
n; (N=17) 4 2 4 2 2 3
X, 142.25 61.50 132 1987 51.00 371.00
s’ 9076.37 480.49 12455 7628243 17.98 288348
2 1 S 2 1
STEP2:  § = ——— Y (n,-1)s° = ——[(4-1)9076 +...+(3-1)576696] - 751837.27
(N-K) i1 (17-6)

STEP3: TS = (17-6) In(751837.27) - [ (4-1)In(9076) + ... + (3-1)In(288348) | - 43.16

STEP 4: The critical x* value with 6 - 1 = 5 degrees of freedom at the 5% significance level is 11.1 (from Table A-8
of Appendix A). Since 43.16 is larger than 11.1, it is concluded that the six variances (g, . . . , s2) are not
homogeneous at the 5% significance level.
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454 LevenesTes for the Equality of Two or MoreVariances

Levenestest provides an aternative to Bartlett's test for homogeneity of variance (testing for
differences among the dispersions of severa groups). Levenestest isless sensitive to departures from
normality than Bartlett's test and has greater power than Bartlett's for non-normal data. In addition, Levene's
test has power nearly as great as Bartlett'stest for normally distributed data. However, Levenestest ismore
difficult to apply than Bartlett'stest since it involves applying an analysis of variance (ANOVA) to the
absolute deviations from the group means. Directions and an example of Levene'stest are contained in Box
4.5-5 and Box 4.5-6, respectively.

STEP 1:

STEP 2:

STEP 3:

STEP 4:

STEP 5:

Consider k groups with a sample size of n for the ith group. Let N represent the total number of samples, i.e., let
N=n,+n,+...+n,. Forexample, consider two wells where 4 samples have been taken from well 1 and 3
samples have been taken from well 2. Inthiscase,k=2,n=4,n,=3,andN=4+3=7.

Box 4.5-5: Directions for Levene's Test

For each of the k groups, calculate the group mean, X ; (section 2.2.2), i.e., calculate:

— 1 nl _ 1 n2 _ 1 nk
Xl:—lej, Xzz—szj, k:—Zxkj.
N, j-1 N, j-1 N j-1
Compute the absolute residuals Zij = |X” - 7'| where X; represents the " value of the i" group.

For each of the k groups, calculate the means, z, of these residuals, i.e., calculate:

1 1 1 ¢
Z-=YY2z,2-=YY2, .. z-=Yz.
7 m§a 2 %§a 3

Kk i Kk
. -1 ' 1 =
Also calculate the overall mean residualas Z = — 2:1 2; Zij = N Z nz.
i= =
Compute the following sums of squares for the absolute residuals:
kN > k 72 >
2 Z 4 z _
SSrora = ZZ%; - =, SSyroups = ). — ~ =, @nd SSerror = SSroma -
i-1 j-1 N i1 n N
SScroups:

SSGROUPS/(k_ 1)
SSERROR/(N -K)

Using Table A-9 of Appendix A, find the critical value of the F-distribution with (k-1) numerator degrees
of freedom, (N-k) denominator degrees of freedom, and a desired level of significance (). For example,
if & = 0.05, the numerator degrees of freedom is 5, and the denominator degrees of freedom is 18, then
using Table A-9, F = 2.77. If fis greater than F, reject the assumptions of equal variances.

Compute f =
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Box 4.5-6: An Example of Levene's Test
Four months of data on arsenic concentration were collected from six wells at a Superfund site. This data set is
shown in the table below. Before analyzing this data, it is important to determine if the variances of the six wells are
equal. Levene's test will be used to make this determination.

STEP 1: The group mean for each well (x ;) is shown in the last row of the table below.

Arsenic Concentration (ppm)
Month Well 1 Well 2 Well 3 Well 4 Well 5 Well 6
1 22.90 2.00 2.0 7.84 24.90 0.34
2 3.09 1.25 109.4 9.30 1.30 4.78
3 35.70 7.80 45 25.90 0.75 2.85
4 4.18 52.00 25 2.00 27.00 1.20
Group Means X,=16.47 X ,=15.76 X ,=29.6 X ,=11.26 X ,=13.49 X =2.29

STEP 2:  To compute the absolute residuals z; in each well, the value 16.47 will be subtracted from Well 1 data,
15.76 from Well 2 data, 29.6 from Well 3 data, 11.26 from Well 4 data, 13.49 from Well 5 data, and 2.29

from Well 6 data. The resulting values are shown in the following table with the new well means (2) and
the total mean z.

Residual Arsenic Concentration (ppm)

Month Well 1 Well 2 Well 3 Well 4 Well 5 Well 6
1 6.43 13.76 27.6 3.42 11.41 1.95
2 13.38 14.51 79.8 1.96 12.19 2.49
3 19.23 7.96 25.1 14.64 12.74 0.56
4 12.29 36.24 27.1 9.26 13.51 1.09

Residual Means  z,=12.83  7,=18.12 7,=39.9 7,=7.32  7,=12.46 Z,=1.52

Total Residual Mean z = (1/6)(12.83 + 18.12 + 39.9 + 7.32 + 12.46 + 1.52) = 15.36

STEP 3: The sum of squares are: SS;q, = 6300.89, SS, g s = 3522.90, and SSgpror = 2777.99.

¢ Seus/k-D) _ 35229/(6-1)
SSeeor/ (N-K)  2777.99/(24-6)

STEP 4:

STEP 5: Using Table A-9 of Appendix A, the F statistic for 5 and 18 degrees of freedom witha = 0.05 is 2.77.
Since f=4.56 exceeds F=2.77, the assumption of equal variances should be rejected.
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4.6 TRANSFORMATIONS

Mogt statistical tests and procedures contain assumptions about the data to which they will be
applied. For example, some common assumptions are that the data are normally distributed; variance
components of a statistical model are additive; two independent data sets have equal variance; and a data set
has no trends over time or space. If the data do not satisfy such assumptions, then the results of a statistical
procedure or test may be biased or incorrect. Fortunately, datathat do not satisfy statistical assumptions may
often be converted or transformed mathematically into aform that allows standard statistical teststo perform
adequatdly.

46.1 Typesof Data Transformations

Any mathematica function that is applied to every point in adata set is called atransformation.
Some commonly used transformations include:

Logarithmic (Log X or Ln X): Thistransformation may be used when the original measurement data
follow alognormal distribution or when the variance at each level of the datais proportional to the
sguare of the mean of the data points at that level. For example, if the variance of data collected
around 50 ppm is approximately 250, but the variance of data collected around 100 ppm is
approximately 1000, then alogarithmic transformation may be useful. This situation is often
characterized by having a constant coefficient of variation (ratio of standard deviation to mean) over
all possible data values.

The logarithmic base (for example, either natural or base 10) needs to be consistent throughout the
analysis. If some of the original values are zero, it is customary to add a small quantity to make the
data value non-zero as the logarithm of zero does not exist. The size of the small quantity depends
on the magnitude of the non-zero data and the consequences of potentially erroneous inference from
the resulting transformed data. Asaworking point, avalue of one tenth the smallest non-zero value
could be selected. It does not matter whether anatural (In) or base 10 (log) transformation is used
because the two transformations are related by the expression In(X) = 2.303 log(X). Directionsfor
applying alogarithmic transformation with an example are givenin Box 4.6-1.

Square Root (vX): Thistransformation may be used when dealing with small whole numbers, such
as bacteriological counts, or the occurrence of rare events, such as violations of a standard over the
course of ayear. The underlying assumption isthat the original data follow a Poisson-like
distribution in which case the mean and variance of the dataare equal. It should be noted that the
sguare root transformation overcorrects when very small values and zeros appear in the origina data.
In these cases, /X +1 isoften used as atransformation.

Inverse Sine (Arcsine X): Thistransformation may be used for binomial proportions based on
count datato achieve stability in variance. Theresulting transformed data are expressed in radians
(angular degrees). Special tables must be used to transform the proportionsinto degrees.

Box-Cox Transformations; Thistransformation is a complex power transformation that takes the
original data and raises each data observation to the power lambda ( A). A logarithmic transformation
isaspecial case of the Box-Cox transformation. Therationaleistofind A such that the transformed
data have the best possible additive model for the variance structure, the errors are normally

EPA QA/G-9 46-1 QA96



distributed, and the variance is as constant as possible over all possible concentration values. The
Maximum Likelihood techniqueisused tofind A such that the residual error from fitting the
theorized model isminimized. In practice, the exact value of A isoften rounded to a convenient value
for easein interpretation (for example, A =-1.1 would be rounded to -1 asit would then have the
interpretation of areciprocal transform). One of the drawbacks of the Box-Cox transformation is the
difficulty in physically interpreting the transformed data.

46.2 Reasonsfor Data Transformations

By transforming the data, assumptionsthat are not satisfied in the original data can be satisfied by
the transformed data. For instance, aright-skewed distribution can be transformed to be approximately
Gaussian (normal) by using alogarithmic or square-root transformation. Then the normal-theory procedures
can be applied to the transformed data. If data are lognormally distributed, then apply proceduresto
logarithms of the data. However, selecting the correct transformation may be difficult. If standard
transformations do not apply, it is suggested that the data user consult a statistician.

Another important use of transformationsisin the interpretation of data collected under conditions
leading to an Analysis of Variance (ANOVA). Some of the key assumptions needed for analysis (for
example, additivity of variance components) may only be satisfied if the data are transformed suitably. The
selection of a suitable transformation depends on the structure of the data collection design; however, the
interpretation of the transformed data remains an issue.

While transformations are useful for dealing with data that do not satisfy statistical assumptions,
they can also be used for various other purposes. For example, transformations are useful for consolidating
datathat may be spread out or that have several extreme values. In addition, transformations can be used to
derive alinear relationship between two variables, so that linear regression analysis can be applied. They can
also be used to efficiently estimate quantities such as the mean and variance of alognormal distribution.
Transformations may also make the analysis of data easier by changing the scale into one that is more
familiar or easier to work with.

Once the data have been transformed, all statistical analysis must be performed on the transformed
data. No attempt should be made to transform the data back to the original form because this can lead to
biased estimates. For example, estimating quantities such as means, variances, confidence limits, and
regression coefficients in the transformed scale typically leads to biased estimates when transformed back
into original scale. However, it may be difficult to understand or apply results of statistical analysis
expressed in the transformed scale. Therefore, if the transformed data do not give noticeable benefitsto the
analysis, it is better to use the original data. Thereisno point in working with transformed data unless it adds
valueto theanaysis.
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Box 4.6-1: Directions for Transforming Data and an Example
Let X;, X,, . . ., X, represent the n data points. To apply a transformation, simply apply the transforming
function to each data point. When a transformation is implemented to make the data satisfy some statistical
assumption, it will need to be verified that the transformed data satisfy this assumption.

Example: Transforming Lognormal Data

A logarithmic transformation is particularly useful for pollution data. Pollution data are often skewed, thus the
log-transformed data will tend to be symmetric. Consider the data set shown below with 15 data points. The
frequency plot of this data (below) shows that the data are possibly lognormally distributed. If any analysis
performed with this data assumes normality, then the data may be logarithmically transformed to achieve
normality. The transformed data are shown in column 2. A frequency plot of the transformed data (below)
shows that the transformed data appear to be normally distributed.

Observed Transformed Observed Transformed

X - In(X) X - In(X)
0.22 - -1.51 0.47 - -0.76
3.48 - 1.25 0.67 - -0.40
6.67 - 1.90 0.75 - -0.29
2.53 - 0.93 0.60 - -0.51
1.11 - 0.10 0.99 - -0.01
0.33 - -1.11 0.90 - -0.11
1.64 - 0.50 0.26 - -1.35

1.37 - 0.31

Number of Observations

Observed Values

Number of Observations

0 L L L L L L L I}
-4 -3 -2 -1 0 1 2 3 4

Transformed Values
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4.7 VALUESBELOW DETECTION LIMITS

Data generated from chemical analysis may fall below the detection limit (DL) of the analytical
procedure. These measurement data are generally described as not detected, or nondetects, (rather than as
Zero or not present) and the appropriate limit of detection is usualy reported. In cases where measurement
data are described as not detected, the concentration of the chemical is unknown athough it lies somewhere
between zero and the detection limit. Data that includes both detected and non-detected results are called
censored datain the statistical literature.

There are avariety of waysto evaluate data that include values below the detection limit. However,
there are no general procedures that are applicablein all cases. Some general guidelines are presented in
Table 4.7-1. Although these guiddlines are usually adequate, they should be implemented cautioudly.

Per centage of
Nondetects Section Statistical Analysis M ethod
< 15% 47.1 Replace nondetects with DL/2,
DL, or avery smal number.
15% - 50% 472 Trimmed mean, Cohen's
adjustment, Winsorized mean
and standard deviation.
> 50% - 90% 4.7.3 Use tests for proportions
(section 3.2.2)

Table4.7-1. Guiddinesfor Analyzing Datawith Nondetects

All of the suggested procedures for analyzing data with nondetects depend on the amount of data
below the detection limit. For relatively small amounts below detection limit values, replacing the nondetects
with asmall number and proceeding with the usual analysis may be satisfactory. For moderate amounts of
data below the detection limit, amore detailed adjustment is appropriate. In situations where relatively large
amounts of data bel ow the detection limit exist, one may need only to consider whether the chemical was
detected as above some level or not. Theinterpretation of small, moderate, and large amounts of data below
the DL issubjective. Table4.7-1 provides percentagesto assist the user in evaluating their particular
situation. However, it should be recognized that these percentages are not hard and fast rules, but should be
based on judgement.

In addition to the percentage of samples below the detection limit, sample size influenceswhich
procedures should be used to evaluate the data. For example, the case where 1 sample out of 4 is not detected
should be treated differently from the case where 25 samples out of 100 are not detected. Therefore, this
guidance suggests that the data analyst consult a statistician for the most appropriate way to evaluate data
containing values below the detection level.
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471 Lessthan 15% Nondetects - Substitution M ethods

If asmall proportion of the observations are not detected, these may be replaced with asmall
number, usudly the detection limit divided by 2 (DL/2), and the usua analysis performed. Asaguideline, if
15% or fewer of the values are not detected, replace them with the method detection limit divided by two and
proceed with the appropriate analysis using these modified values. If smple substitution of values below the
detection limit is proposed when more than 15% of the values are reported as not detected, consider using
nonparametric methods or atest of proportions to analyze the data. If a more accurate method isto be
considered, see Cohen's Method (section 4.7.2.1).

472 Between 15-50% Nondetects
47.2.1 Cohen'sMethod

Cohen's method provides adjusted estimates of the sample mean and standard deviation that accounts
for data below the detection level. The adjusted estimates are based on the statistical technique of maximum
likelihood estimation of the mean and variance so that the fact that the nondetects are below the limit of
detection but may not be zero is accounted for. The adjusted mean and standard deviation can then be used in
the parametric tests described in Chapter 3 (e.g., the one samplet-test of section 3.2.1.1). However, if more
than 50% of the observations are not detected, Cohen's method should not be used. 1n addition, this method
requires that the data without the nondetects be normally distributed and the detection limit is aways the
same. Directions for Cohen's method are contained in Box 4.7-1; an exampleis given in Box 4.7-2.

Box 4.7-1: Directions for Cohen's Method

Let X;, X,, . . ., X, represent the n data points with the first m values representing the data points above the
detection limit (DL). Thus, there are (n-m) data points are below the DL.

_ m
STEP 1: Compute the sample mean X, from the data above the detection limit: Xd = i Z Xi
m

i=1

STEP 2: Compute the sample variance s from the data above the detection limit:
2 1 ?
le T le
2 _ =1 m\ i
Sd
m-1
2
S
STEP3:  Compute h = (n-m) and y = — d >
n (X,-DL)

STEP 4: Use h andy in Table A-10 of Appendix A to determineX. For example, if h = 0.4 andy = 0.30,
then X = 0.6713. If the exact value of h andy do not appear in the table, use double linear
interpolation (Box 4.7-3) to estimate A.

STEP 5: Estimate the corrected sample mean, X, and sample variance, s°, to account for the data below
. vi vi v v 2
the detection limit, as follows: X = X; - A(X; - DL) and s? = Sd2 + A(Xy - DL)".
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Box 4.7-2: An Example of Cohen's Method

Sulfate concentrations were measured for 24 data points. The detection limit was 1,450 mg/L and 3 of
the 24 values were below the detection level. The 24 values are 1850, 1760, < 1450 (ND), 1710, 1575,
1475, 1780, 1790, 1780, < 1450 (ND), 1790, 1800, < 1450 (ND), 1800, 1840, 1820, 1860, 1780, 1760,
1800, 1900, 1770, 1790, 1780 mg/L. Cohen's Method will be used to adjust the sample mean for use in
a t-test to determine if the mean is greater than 1600 mg/L.

STEP 1:  The sample mean of the m = 21 values above the detection level is)(d = 17719
STEP 2: The sample variance of the 21 quantified values is $= 8593.69.

STEP 3:  h=(24 - 21)/24 = 0.125 andy = 8593.69/(1771.9 - 1450§ = 0.083

STEP 4: Table A-10 of Appendix A was used for h = 0.125 andy = 0.083 to find the value ofr. Since
the table does not contain these entries exactly, double linear interpolation was used to

estimate A = 0.149839 (see Box 4.7-3).

STEP 5: The adjusted sample mean and variance are then estimated as follows:

X = 17719 - 0.149839(1771.9 - 1450) = 1723.67 and

s2? = 8593.69 + 0.149839(1771.9 - 1450)? = 24119.95

Box 4.7-3: Double Linear Interpolation

The details of the double linear interpolation are provided to assist in the use of Table A-10 of Appendix

A. The desired value forf\corresponds toy = 0.083 and, h = 0.125 from Box 4.7-2, Step 3. The values
from Table A-10 for interpolatation are:

y h=0.10 h=0.15
0.05 0.11431 0.17925
0.10 0.11804 0.18479

There are 0.05 units between 0.10 and 0.15 on the h-scale and 0.025 units between 0.10 and 0.125.
Therefore, the value of interest lies (0.025/0.05)100% = 50% of the distance along the interval between
0.10 and 0.15. To linearly interpolate between tabulated values on the h axis foy = 0.05, the range
between the values must be calculated, 0.17925 - 0.11431 = 0.06494; the value that is 50% of the
distance along the range must be computed, 0.06494 x 0.50 = 0.03247; and then that value must be
added to the lower point on the tabulated values, 0.11431 + 0.03247 = 0.14678. Similarly for= 0.10,
0.18479 - 0.11804 = 0.06675, 0.06675 x 0.50 = 0.033375, and 0.11804 + 0.033375 = 0.151415.

On the y-axis there are 0.033 units between 0.05 and 0.083 and there are 0.05 units between 0.05 and

0.10. The value of interest (0.083) lies (0.033/0.05 x 100) = 66% of the distance along the interval
between 0.05 and 0.10, so 0.151415 - 0.14678 = 0.004635, 0.004635 * 0.66 = 0.003059. Therefore,

A=0.14678 + 0.003059 = 0.149839.
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4722 Trimmed Mean

Trimming discards the datain the tails of adata set in order to develop an unbiased estimate of the
population mean. For environmental data, nondetects usually occur in the l€eft tail of the data so trimming the
data can be used to adjust the data set to account for nondetects when estimating amean. Developing a
100p% trimmed mean involves trimming p% of the datain both the lower and the upper tail. Notethat p
must be between 0 and .5 since p represents the portion deleted in both the upper and the lower tail. After np
of the largest values and np of the smallest values are trimmed, there are n(1-2p) data values remaining.
Therefore, the proportion trimmed is dependent on the total sample size (n) since a reasonable amount of
samples must remain for analysis. For approximately symmetric distributions, a 25% trimmed mean (the
midmean) is a good estimator of the population mean. However, environmenta data are often skewed (non-
symmetric) and in these cases a 15% trimmed mean performance may be a good estimator of the population
mean. It isalso possibleto trim the data only to replace the nondetects. For example, if 3% of the dataare
below the detection limit, a 3% trimmed mean could be used to estimate the population mean. Directions for
developing atrimmed mean are contained in Box 4.7-4 and an exampleis given in Box 4.7-5. A trimmed
varianceisrarely calculated and is of limited use.

Box 4.7-4: Directions for Developing a Trimmed Mean
Let X;, X,, . . ., X, represent the n data points. To develop a 100p% trimmed mean (0 < p < 0.5):

STEP 1: Let t represent the integer part of the product np. For example, if p=.25and n =17,
np = (.25)(17) =4.25,sot = 4.

STEP 2: Delete the t smallest values of the data set and the t largest values of the data set.
_ 1 n-2t

STEP 3: Compute the arithmetic mean of the remaining n - 2t values: X = _Zt Xi
nN-217i-1

This value is the estimate of the population mean.

Box 4.7-5: An Example of the Trimmed Mean

Sulfate concentrations were measured for 24 data points. The detection limit was 1,450 mg/L and 3 of the 24
values were below this limit. The 24 values listed in order from smallest to largest are: < 1450 (ND), < 1450
(ND), < 1450 (ND), 1475, 1575, 1710, 1760, 1760, 1770, 1780, 1780, 1780, 1780, 1790, 1790, 1790, 1800,
1800, 1800, 1820, 1840, 1850, 1860, 1900 mg/L. A 15% trimmed mean will be used to develop an estimate
of the population mean that accounts for the 3 nondetects.

STEP 1: Since np =(24)(.15) =3.6,t=3.

STEP 2: The 3 smallest values of the data set and the 3 largest values of the data set were deleted. The
new data set is: 1475, 1575, 1710, 1760, 1760, 1770, 1780, 1780, 1780, 1780, 1790, 1790,
1790, 1800, 1800, 1800, 1820, 1840 mg/L.

STEP 3: Compute the arithmetic mean of the remaining n-2t values:
X - —L (1475 + ... + 1840) - 1755.56
24-(2)(3)

Therefore, the 15% trimmed mean is 1755.56 mg/L, which is an estimate of the population mean.
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4.7.2.3 Winsorized M ean and Standard Deviation

Winsorizing replaces datain the tails of a data set with the next most extreme data value. For
environmental data, nondetects usualy occur in the left tail of the data. Therefore, winsorizing can be used to
adjust the data set to account for nondetects. The mean and standard deviation can then be computed on the
new dataset. Directionsfor winsorizing data (and revising the sample size) are contained in Box 4.7-6 and
an exampleisgivenin Box 4.7-7.

Box 4.7-6: Directions for Developing a Winsorized
Mean and Standard Deviation

Let X;, X,, . . ., X, represent the n data points and m represent the number of data points above the detection
limit (DL), and hence n-m below the DL.

STEP 1. Listthe data in order from smallest to largest, including nondetects. Label these points X, ,,
X2y + =+ X(ny (SO that X, is the smallest, X ,, is the second smallest, and X, is the largest).

STEP 2: Replace the n-m nondetects with X .., and replace the n-m largest values with X, .

STEP 3: Using the revised data set, compute the sample mean, x, and the sample standard deviation, s:

n
2 o2
) QX - nx
v/ 1 and S = '=l—
X == .21: X; 1
s - - o o s(n-1)
STEP 4: The Winsorized meanX ,, is equal to X. The Winsorized standard deviation is S, = ﬁ

m-n-

Box 4.7-7: An Example of a Winsorized
Mean and Standard Deviation

Sulfate concentrations were measured for 24 data points. The detection limit was 1,450 mg/L and 3 of the 24
values were below the detection level. The 24 values listed in order from smallest to largest are: < 1450 (ND),
< 1450 (ND), < 1450 (ND), 1475, 1575, 1710, 1760, 1760, 1770, 1780, 1780, 1780, 1780, 1790, 1790,
1790, 1800, 1800, 1800, 1820, 1840, 1850, 1860, 1900 mg/L.

STEP 1: The data above are already listed from smallest to largest. There are n=24 samples, 21 above DL,
and n-m=3 nondetects.

STEP 2: The 3 nondetects were replaced with X ,, and the 3 largest values were replaced with X ,,,. The
resulting data setis: 1475, 1475, 1475, 1475, 1575, 1710, 1760, 1760, 1770, 1780, 1780, 1780,
1780, 1790, 1790, 1790, 1800, 1800, 1800, 1820, 1840, 1840, 1840, 1840 mg/L

STEP 3: For the new data set, X = 1731 mg/L and s = 128.52 mg/L.

STEP 4: The Winsorized mean X,, = 1731 mg/L. The Winsorized sample standard deviation is:

_ 12852(24-1) _ 11500

W 2(21) -24-1
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4.7.3 Greater than 50% Nondetects- Test of Proportions

If more than 50% of the data are below the detection limit but at least 10% of the observations are
guantified, tests of proportions may be used to test hypotheses using the data. Thus, if the parameter of
interest is amean, consider switching the parameter of interest to some percentile greater than the percent of
data below the detection limit. For example, if 67% of the data are below the DL, consider switching the
parameter of interest to the 75 ™ percentile. Then the method described in 3.2.2 can be applied to test the
hypothesis concerning the 75 " percentile. 1t isimportant to note that the tests of proportions may not be
applicable for composite samples. In this case, the data analyst should consult a statistician before
proceeding with analysis.

If very few quantified values are found, a method based on the Poisson distribution may be used as
an alternative approach. However, with alarge proportion of nondetects in the data, the data analyst should
consult with a statistician before proceeding with analysis.
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CHAPTER 5

STEP 5: DRAW CONCLUSIONSFROM THE DATA

THE DATA QUALITY ASSESSMENT PROCESS

Review DQOs and Sampling Design

¥

Conduct Preliminary Data Review
‘ Purpose

DRAW CONCLUSIONS FROM THE DATA

Conduct the hypothesis test and interpret the results
Select the Statistical Test in the context of the data user's objectives.

Verify the Assumptions
‘ « Perform the Statistical Hypothesis Test

Activities

« Draw Study Conclusions.
« Evaluate Performance of the Sampling Design

Draw Conclusions From the Data

Toals

« Issues in hypothesis testing related tounderstanding
and communicating the test results

Step 5: Draw Conclusions from the Data

o Perform the calculations for the statistical hypothesis test.
= Perform the calculations and document them clearly.
= |f anomalies or outliers are present in the data set, perform the calculations with and
without the questionable data.

o Evaluate the statistical test results and draw conclusions.
= If the null hypothesis is rejected, then draw the conclusions and document the analysis.
= |f the null hypothesis is not rejected, verify whether the tolerable limits on false negative
decision errors have been satisfied. If so, draw conclusions and document the analysis; if
not, determine corrective actions, if any.
= Interpret the results of the test.

® FEvaluate the performance of the sampling design if the design is to be used again.
= Evaluate the statistical power of the design over the full range of parameter values;
consult a statistician as necessary.
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CHAPTER 5
STEP 5: DRAW CONCLUSIONSFROM THE DATA

51 OVERVIEW AND ACTIVITIES

In thisfinal step of the DQA Process, the analyst performs the statistical hypothesistest and draws
conclusions that address the data user's objectives. This step represents the culmination of the planning,
implementation, and assessment phases of the data operations. The data user's planning objectives will have
been reviewed (or developed retrospectively) and the sampling design examined in Step 1. Reports on the
implementation of the sampling scheme will have been reviewed and a preliminary picture of the sampling
results developed in Step 2. In light of the information gained in Step 2, the statistical test will have been
selected in Step 3. To ensure that the chosen statistical methods are valid, the key underlying assumptions of
the statistical test will have been verified in Step 4. Consequently, all of the activities conducted up to this
point should ensure that the cal culations performed on the data set and the conclusions drawn herein Step 5
address the data user's needs in a scientifically defensible manner. This chapter describes the main activities
that should be conducted during this step. The actua procedures for implementing some commonly used
statistical tests are described in Step 3, Select the Statistical Test.

511 Perform the Statistical Hypothesis Test

The goal of thisactivity isto conduct the statistical hypothesistest. Step-by-step directions for
saeveral commonly used statistical tests are described in Chapter 3. The calculations for the test should be
clearly documented and easily verifiable. In addition, the documentation of the results of the test should be
understandable so that the results can be communicated effectively to those who may hold a stakein the
resulting decision. If computer software is used to perform the cal culations, ensure that the procedures are
adequately documented, particularly if agorithms have been developed and coded specifically for the project.

The analyst should always exercise best professional judgment when performing the calculations.
For instance, if outliers or anomalies are present in the data set, the calculations should be performed both
with and without the questionable data to see what effect they may have on the resuilts.

5.1.2 Draw Study Conclusions

The goal of this activity isto trandate the results of the statistical hypothesis test so that the data
user may draw a conclusion from the data. The results of the tatistical hypothesis test will be either:

(@ reject the null hypothesis, in which case the analyst is concerned about a possible false positive
decision error; or

(b) fail to reject the null hypothesis, in which case the analyst is concerned about a possible false
negative decision error.

In case (@), the data have provided the evidence needed to reject the null hypothesis, so the decision
can be made with sufficient confidence and without further analysis. Thisis because the statistical test based
on the classical hypothesis testing philosophy, which isthe approach described in prior chapters, inherently
controls the false positive decision error rate within the data user's tolerable limits, provided that the
underlying assumptions of the test have been verified correctly.
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In case (b), the data do not provide sufficient evidence to reject the null hypothesis, and the data must
be analyzed further to determine whether the data user's tolerable limits on false negative decision errors have
been satisfied. One of two possible conditions may prevail:

D The data do not support rejecting the null hypothesis and the false negative decision error
limits were satisfied. In this case, the conclusionisdrawn in favor of the null hypothesis,
since the probability of committing a false negative decision error is believed to be
sufficiently small in the context of the current study (see section 5.2).

2 The data do not support rejecting the null hypothesis, and the fal se negative decision error
limitswere not satisfied. In this case, the statistical test was not powerful enough to satisfy
the data user's performance criteria. The data user may choose to tolerate a higher false
negative decision error rate than previously specified and draw the conclusion in favor of the
null hypothesis, or instead take some form of corrective action, such as obtaining additional
data before drawing a conclusion and making a decision.

When the test failsto reject the null hypothesis, the most thorough procedure for verifying whether the false
negative decision error limits have been satisfied isto compute the estimated power of the statistical test,
using the variability observed in the data. Computing the power of the statistical test across the full range of
possible parameter values can be complicated and usually requires specialized software. Power calculations
are aso necessary for evaluating the performance of a sampling design. Thus, power calculations will be
discussed further in section 5.1.3.

A smpler method can be used for checking the performance of the statistical test. Using an estimate
of variance obtained from the actual data or upper 95% confidence limit on variance, the sample size required
to satisfy the data user's objectives can be calculated retrospectively. If thistheoretical ssmple sizeisless
than or equal to the number of samples actualy taken, then the test is sufficiently powerful. If the required
number of samplesis greater than the number actually collected, then additional samples would be required to
satisfy the data user's performance criteria for the statistical test. An example of this method is contained in
Box 5.1-1. The equations required to perform these cal culations have been provided in the detailed step-by-
step instructions for each hypothesistest procedure in Chapter 3.

5.1.3 Evaluate Performance of the Sampling Design

If the sampling design isto be used again, either in alater phase of the current study or in asimilar
study, the analyst will be interested in evaluating the overall performance of the design. To evaluate the
sampling design, the analyst performs a statistical power analysis that describes the estimated power of the
statistical test over the range of possible parameter values. The power of adtatistical test isthe probability of
rejecting the null hypothesis when the null hypothesisisfase. The estimated power is computed for all
parameter vaues under the aternative hypothesisto create apower curve. A power analysis helps the analyst
evaluate the adequacy of the sampling design when the true parameter vaue lies in the vicinity of the action
level (which may not have been the outcome of the current study). In this manner, the analyst may determine
how well a gtatistical test performed and compare this performance with that of other tests.

The calculations required to perform a power analysis can be rlatively complicated, depending on
the complexity of the sampling design and statistical test selected. Box 5.1.2 illustrates power calculations
for atest of asingle proportion, which is one of the smpler cases. A further discussion of power curves
(performance curves) is contained in  the Guidance for Data Quality Objectives (EPA QA/G-4, 1994).
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Box 5.1-1: Checking Adequacy of Sample Size for a One-
Sample t-Test for Simple Random Sampling

In Box 3.3-2, the one-sample t-test was used to test the hypothesis H: 4 < 95 ppm vs. H,: 1 > 95 ppm. DQOs
specified that the test should limit the false positive error rate to 5% and the false negative error rate to 20% if the
true mean were 105 ppm. A random sample of size n = 9 had sample meanx = 99.38 ppm and standard deviation
s =10.41 ppm. The null hypothesis was not rejected. Assuming that the true value of the standard deviation was
equal to its sample estimate 10.41 ppm, it was found that a sample size of 9 would be required, which validated the
sample size of 9 which had actually been used.

The distribution of the sample standard deviation is skewed with a long right tail. It follows that the chances are
greater than 50% that the sample standard deviation will underestimate the true standard deviation. In such a case
it makes sense to build in some conservatism, for example, by using an upper 90% confidence limit foro in step 5 of
Box 3.3-1. Using Boxes 4.6-1 and 4.6-2 and n - 1 = 8 degrees of freedom, it is found that U = 3.49, so that an
upper 90% confidence limit for the true standard deviation is

sy/[(n-1)7U] = 10.41/87349 - 15.76

Using this value for s in Step 5 of Box 3.3-1 or Box 3.3-2 leads to the sample size estimate of 17. Hence, a sample
size of at least 17 should be used to be 90% sure of achieving the DQOs. Since it is generally desirable to avoid the
need for additional sampling, it is advisable to conservatively estimate sample size in the first place. In cases where
DQOs depend on a variance estimate, this conservatism is achieved by intentionally overestimating the variance.

Box 5.1-2: Example of Power Calculations for the One-Sample Test of a Single Proportion

This box illustrates power calculations for the test ofHy: P > .20 vs. Ha: P < .20, with a false positive error rate of 5%
when P=.20 presented in Boxes 3.3-9 and 3.3-10. The power of the test will be calculated assuming B, = .15 and
before any data are available. Since nP, and n(1-P,) both exceed 4, the sample size is large enough for the normal
approximation, and the test can be carried out as in steps 3 and 4 of Box 3.3-9.

STEP 1: Determine the general conditions for rejection of the null hypothesis. In this case, the null hypothesis is
rejected if the sample proportion is sufficiently smaller than R,. (Clearly, a sample proportion above P,
cannot cast doubt on H,.) By steps 3 and 4 of Box 3.3-9 and 3.3-10, H, is rejected if

p+.5/n-PR,
— <74,

VPoQy/ N

Here p is the sample proportion, Q, = 1 - P, n is the sample size, and z,_, is the critical value such that
100(1-a)% of the standard normal distribution is below z_,. This inequality is true if

p+.5n < P,-z_,PQ,/n.

STEP 2: Determine the specific conditions for rejection of the null hypothesis if P, (=1-Q,) is the true value of the
proportion P. The same operations as are used in step 3 of Box 3.3-9 are performed on both sides of
the above inequality. However, P, is replaced by P, since it is assumed that P, is the true proportion.
These operations make the normal approximation applicable. Hence, rejection occurs if

p+rSn-P PP -z, yRQ/M 20 - .15 - 1645/(Q(B/8 _ e
[PIQ./n /P.Q./n J(15)(85)785

STEP 3: Find the probability of rejection if P, is the true proportion. By the same reasoning that led to the test in
steps 3 and 4 of Boxes 3.3-9 and 3.3-10, the quantity on the left-hand side of the above inequality is a
standard normal variable. Hence the power at P, = .15 (i.e., the probability of rejection of H, when .15 is
the true proportion) is the probability that a standard normal variable is less than -0.55. In this case, the
probability is approximately 0.3 (using the last line from Table 1 of Appendix A) which is fairly small.
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52 INTERPRETING AND COMMUNICATING THE TEST RESULTS

Sometimes difficulties may arise in interpreting or explaining the results of a statistical test. One
reason for such difficulties may stem from inconsistenciesin terminology; another may be dueto alack of
understanding of some of the basic notions underlying hypothesistests. Asan example, in explaining the
results to a data user, an analyst may use different terminology than that appearing in this guidance. For
instance, rather than saying that the null hypothesis was or was not rejected, analysts may report the result of
atest by saying that their computer output shows a p-value of 0.12. What doesthismean? Similar problems
of interpretation may occur when the data user attempts to understand the practical significance of the test
results or to explain the test resultsto others. The following paragraphs touch on some of the philosophical
issues related to hypothesis testing which may help in understanding and communicating the test results.

5.21 Interpretation of p-Values

The classical approach for performing hypothesis tests is to prespecify the significance level of the
test, i.e., the Type | decision error rate «. Thisrateis used to define the decision rule associated with the
hypothesistest. For instance, in testing whether the population mean  exceeds athreshold level (e.g., 100
ppm), the test statistic may depend on X, an estimate of 1. Obtaining an estimate X that is greater than 100
ppm may occur simply by chance even if the true mean p islessthan or equal to 100; however, if X is“much
larger” than 100 ppm, then there is only asmall chance that the null hypothesisH , (1 < 100 ppm) istrue.
Hence the decision rule might take the form “reject H , if X exceeds 100 + C”, where C is a positive quantity
that depends on « (and on the variability of X). If thiscondition is met, then the result of the statistical test is
reported as “reject H ;" ; otherwise, the result is reported as“do not reject H .” (See Box 3.3-2 for an example
of at-test.)

An alternative way of reporting the result of a tatistical test isto report its p-value, which is defined
as the probability, assuming the null hypothesisto be true, of observing atest result at least as extreme as
that found in the sample. Many statistical software packages report p-val ues, rather than adopting the
classical approach of using a prespecified Type| error rate. In the above example, for instance, the p-vaue
would be the probahility of observing asample mean aslargeas X (or larger) if in fact the true mean was
equal to 100 ppm. Obvioudly, in making a decision based on the p-value, one should regect H ,when pis
small and not rgject it if pislarge. Thusthe relationship between p-values and the classical hypothesis
testing approach isthat oneregjects H  if the p-value associated with the test result islessthan  «. If the data
user had chosen the Type | error rate as 0.05 a priori and the analyst reported a p-value of 0.12, then the data
user would report the result as*“ do not regject the null hypothesis;” if the p-value had been reported as 0.03,
then that person would report the result as “reject the null hypothesis.” An advantage of reporting p-valuesis
that they provide a measure of the strength of evidence for or against the null hypothesis, which alows data
usersto establish their own Type | error rates. The significance level can be interpreted asthat p-value ( «)
that divides “do not reject H " from “reject H,."

5.22 “Accepting” vs. “Failingto Rgect” the Null Hypothesis

As noted in the paragraphs above, the classical approach to hypothesis testing results in one of two
conclusions: “reject H )" (called asignificant result) or “do not reject H ,” (anonsignificant result). Inthe
latter case one might be tempted to equate “do not reject H " with “accept H,.” Thisterminology is not
recommended, however, because of the philosophy underlying the classicd testing procedure. This
philosophy places the burden of proof on the dternative hypothesis, that is, the null hypothesisis regjected
only if the evidence furnished by the data convinces us that the alternative hypothesis isthe more likely state
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of nature. If anonsignificant result is obtained, it provides evidence that the null hypothesis  could
sufficiently account for the observed data, but it does not imply that the hypothesisisthe only hypothesis that
could be supported by the data. In other words, a highly nonsignificant result (e.g., a p-value of 0.80) may
indicate that the null hypothesis provides a reasonable model for explaining the data, but it does not
necessarily imply that the null hypothesisistrue. It may, for example, smply indicate that the sample size
was not large enough to establish convincingly that the alternative hypothesis was more likely. When the
phrase “accept H ;" is encountered, it must be considered as * accepted with the preceding cavests.”

5.23 Statistical Significancevs. Practical Significance

Thereisan important distinction between these two concepts. Statistical significance simply refers
to the result of the hypothesistest: Wasthe null hypothesisrejected? The likelihood of achieving a
statistically significant result depends on the true value of the population parameter being tested (for
example, 1), how much that value deviates from the value hypothesized under the null hypothesis (for
example, U,), and on the sample size. Thisdependenceon (U - | ) isdepicted by the power curve associated
with the test (section 5.1.3). A steep power curve can be achieved by using alarge sample size; this means
that there will be a high likelihood of detecting even asmall difference. On the other hand, if small sample
sizesare used, the power curve will be less steep, meaning that only avery large difference betweenpandp
will be detectable with high probability. Hence, suppose one obtains a statistically significant result but has
no knowledge of the power of thetest. Thenit ispossible, in the case of the steep power curve, that one may
be declaring significance (claiming L > p ,, for example) when the actual difference, from apractical
standpoint, may be inconsequential. Or, in the case of the dowly increasing power curve, one may not find a
significant result even though a“large” difference between prand p , exists. Neither of these Situationsis
desirable: in the former case, there has been an excess of resources expended, whereas in the latter case, a
Typell error islikely and has occurred.

But how large a difference between the parameter and the null value is of rea importance? This
relates to the concept of practical significance. Ideally, this question is asked and answered as part of the
DQO process during the planning phase of the study. Knowing the magnitude of the difference that is
regarded as being of practica significance isimportant during the design stage because this allows one, to the
extent that prior information permits, to determine a sampling plan of type and size that will make the
magnitude of that difference commensurate with a difference that can be detected with high probability.

From a purdly statistical design perspective, this can be considered to be main purpose of the DQO process.
With such planning, the likelihood of encountering either of the undesirable situations mentioned in the prior
paragraph can be reduced. Box 5.2-1 contains an example of a statistically significant but fairly
inconsequential difference.

5.24 Impact of Biason Test Results

Bias is defined as the difference between the expected value of a statistic and a population parameter.
It isrelevant when the statistic of interest (e.g., asample average X) isto be used as an estimate of the
parameter (e.g., the population mean ). For example, the population parameter of interest may bethe
average concentration of dioxin within the given bounds of a hazardous waste site, and the statistic might be
the sample average as obtained from arandom sample of points within those bounds. The expected value of
astatistic can be interpreted as supposing one repeatedly implemented the particular sampling design avery
large number of times and cal culated the statistic of interest in each case. The average of the gatistic's
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Box 5.2-1: Example of a Comparison of Two Variances
which is Statistically but not Practically Significant

The quality control (QC) program associated with a measurement system provides important information on
performance and also yields data which should be taken into account in some statistical analyses. The QC program
should include QC check samples, i.e., samples of known composition and concentration which are run at regular
frequencies. The term precision refers to the consistency of a measurement method in repeated applications under
fixed conditions. Precision is usually equated with a standard deviation. For many purposes, the appropriate
standard deviation is one which results from applying the system to the same sample over a long period of time.

This example concerns two methods for measuring ozone in ambient air, an approved method and a new
candidate method. Both methods are used once per week on a weekly basis for three months. Based on 13
analyses with each method of the mid-range QC check sample at 100 ppb, the null hypothesis of the equality of the
two variances will be tested with a false positive error rate of 5% or less. (If the variances are equal, then the
standard deviations are equal.) Method 1 had a sample mean of 80 ppb and a standard deviation of 4 ppb.
Method 2 had a mean of 90 ppb and a standard deviation of 8 ppb. The Shapiro-Wilks test did not reject the
assumption of normality for either method. Applying the F-test of Box 4.5-2, the F ratio is §/4° = 2. Using 12
degrees of freedom for both the numerator and denominator, the F ratio must exceed 3.28 in order to reject the
hypothesis of equal variances (Table A-9 of Appendix A). Since 4 > 3.28, the hypothesis of equal variances is
rejected, and it is concluded that method 1 is significantly more precise than method 2.

In an industrialized urban environment, the true ozone levels at a fixed location and time of day are known to vary
over a period of months with a coefficient of variation of at least 100%. This means that the ratio of the standard
deviation (SD) to the mean at a given location is at least 1. For a mean of 100 ppb, the standard deviation over time
for true ozone values at the location would be at least 100 ppb. Relative to this degree of variability, a difference
between measurement error standard deviations of 4 or 8 ppb is negligible. The overall variance, incorporating the
true process variability and measurement error, is obtained by adding the individual variances. For instance, if
measurement error standard deviation is 8 ppb, then the total variance is (100 ppb)(100 ppb) + (8 ppb)(8 ppb).
Taking the square root of the variance gives a corresponding total standard deviation of 100.32 ppb. For a
measurement error standard deviation of 4 ppb, the total standard deviation would be 100.08 ppb. From a practical
standpoint, the difference in precision between the two methods is insignificant for the given application, despite the
finding that there is a statistically significant difference between the variances of the two methods.

values would then be regarded asiits expected value. Let E denote the expected value of X and dencte the
relationship between the expected value and the parameter, |, asE = 4 + b where bisthe bias. For instance,
if the bias occurred due to incomplete recovery of an analyte (and no adjustment is made), then

b = (R-100)/100, where R denotes the percent recovery. Bias may aso occur for other reasons, such as lack
of coverage of the entire target population (e.g., if only the drums within a storage site that are easily
accessible are digible for inclusion in the sample, then inferences to the entire group of drums may be
biased). Moreover, in cases of incomplete coverage, the magnitude and direction of the bias may be
unknown. An example involving comparison of the biases of two measurement methodsis contained in

Box 5.2-2.

In the context of hypothesis testing, the impact of bias can be quite severe in some circumstances.
This can beillustrated by comparing the power curve of atest when biasis not present with a power curve for
the same test when biasis present. The basic influence of biasisto shift the former “no bias’ curveto the
right or left, depending on the direction of the bias. If the biasis constant, then the second curve will be an
exact trandation of the former curve; if not, there will be a change in the shape of the second curve in addition
to thetrandation. If the existence of the bias is unknown, then the former power curve will be regarded as the
curve that determines the properties of the test when in fact the second curve will be the one that actually
represents the test's power. For example, in Figure 5.2-1 when the true value of the parameter is 120, the“no
bias’ power is 0.72 but the true power (the biased power) isonly 0.4, asubstantial difference.
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Box 5.2-2: Example of a Comparison of Two Biases

This example is a continuation of the 0zone measurement comparison described in Box 5.2-1. Letx and s, denote
the sample mean and standard deviation of measurement method 1 applied to the QC check sample, and lety and
s, denote the sample mean and standard deviation of method 2. Thenx = 80 ppb, s, = 4 ppb, Y =90 ppb and s, =
8 ppb. The estimated biases areX - T = 80 - 100 = -20 ppb for method 1, andY - T = 90-100 = 10 ppb for method

2, since 100 ppb is the true value T. That is, method 1 seems to underestimate by 20 ppb, and method 2 seems to
underestimate by 10 ppb. Let , and y, be the underlying mean concentrations for measurement methods 1 and 2
applied to the QC check sample. These means correspond to the average results which would obtain by applying

each method a large number of times to the QC check sample, over a long period of time.

A two-sample t-test (Boxes 3.3-1 and 3.3-3) can be used to test for a significant difference between these two
biases. In this case, a two-tailed test of the null hypothesis H,: L, - 4, = 0 against the alternative H,: p, - 4, # 0'is
appropriate, because there is no a priori reason (in advance of data collection) to suspect that one measurement
method is superior to the other. (In general, hypotheses should not be tailored to data.) Note that the difference
between the two biases is the same as the difference (i, - Y,) between the two underlying means of the
measurement methods. The test will be done to limit the false positive error rate to 5% if the two means are equal.

STEP 1: X =80 ppb, s, =4 ppb, Y =90 ppb, s, = 8 ppb.

STEP 2: From Box 5.2-1, it is known that the methods have significantly different variances, so that
Sattherthwaite's t-test should be used. Therefore,

2

> -
Sk Sy N
= _ et — = —_t =
SNE m n 13 13
2 2
S, S 2,8
STEP3: f = m n = 13 13 = 17.65.
4 4 4 4
Sy . Sy 4 . _8
mZ(m _ 1) n2 (n _ 1) 132 12 132 12

Rounding down to the nearest integer gives f = 17. For a two-tailed test, the critical value is
t 1.an = ters = 2.110, from Table A-1 of Appendix A.

_X-Y _ 8 -9
Se 2.48

STEP 4: t = -4.032

STEP 5: For a two-tailed test, compare *t*with t, ,, = 2.11. Since 4.032 > 2.11, reject the null hypothesis and
conclude that there is a significant difference between the two method biases, in favor of method 2.

This box illustrates a situation involving two measurement methods where one method is more precise, but also
more biased, than the other. If no adjustment for bias is made, then for many purposes, the less biased, more
variable method is preferable. However, proper bias adjustment can make both methods unbiased, so that the
more precise method becomes the preferred method. Such adjustments can be based on QC check sample
results, if the QC check samples are regarded as representative of environmental samples involving sufficiently
similar analytes and matrices.
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Figureb5.2-1. lllustration of Unbiased versus Biased Power Curves

Since biasis not impacted by changing the sample size, while the precision of estimates and the
power of testsincreases with sample size, the relative importance of bias becomes more pronounced when the
sample size increases (i.e., when one makes the power curve steeper). Similarly, if the same magnitude of
bias exists for two different sites, then the impact on testing errors will be more severe for the site having the
smaller inherent variability in the characteristic of interest (i.e., when bias represents alarger portion of total
variahility).

To minimize the effects of bias. identify and document sources of potential bias; adopt measurement
procedures (including specimen collection, handling, and analysis procedures) that minimize the potentia for
bias; make a concerted effort to quantify bias whenever possible; and make appropriate compensation for
bias when possible.

5.25 Quantity vs. Quality of Data

The above conclusionsimply that, if compensation for bias cannot be made and if statistically-
based decisions are to be made, then there will be situations in which serious consideration should be given
to using an imprecise (and perhaps relatively inexpensive) chemical method having negligible bias as
compared to using avery precise method that has even amoderate degree of bias. The tradeoff favoring the
imprecise method is especially relevant when the inherent variability in the populationis very large relative to
the random measurement error.

For example, suppose a mean concentration for agiven spatial area (site) is of interest and that the
coefficient of variation (CV) characterizing the sit€'s variability is 100%. Let method A denote an imprecise
method, with measurement-error CV of 40%, and let method B denote a highly precise method, with
measurement-error CV of 5%. The overal variahility, or total variability, can essentially be regarded asthe
sum of the spatia variability and the measurement variability. These are obtained from the individual CVsin
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the form of variances. AsCV equals standard deviation divided by mean, it follows that the site standard
deviation isthen the CV timesthe mean. Thus, for the site, the varianceis 1.00 2 x mean?; for method A, the
variance is 0.40% x mean?; and for method B, the variance is 0.05 2 x mean®. The overal variability when
using method A isthen (1.00 2 x mean?) + (0.40% x mean?) = 1.16 x mean?, and when using method B, the
varianceis (1.002 x mean?) + (0.05% x mean?) = 1.0025 mean?. It followsthat the overal CV when using
each method is then (1.077 x mean) / mean = 107.7% for method A, and (1.001 x mean) / mean = 100.1%

for method B.

Now consider asample of 25 specimensfromthe site. The precision of the sample mean can then be
characterized by the relative standard error (RSE) of the mean (which for the simple random sample situation
issimply the overall CV divided by the square root of the ssmple size). For Method A, RSE = 21.54%; for
method B, RSE = 20.02%. Now suppose that the imprecise method (Method A) is unbiased, while the
precise method (Method B) has a 10% bias (e.g., an analyte percent recovery of 90%). An overall measure of
error that reflects how well the sample mean estimates the site mean is the relative root mean squared error
(RRMSE):

RRMSE = /(RB)Z+(RE)?

where RB denotes the relative bias (RB = 0 for Method A sinceit is unbiased and RB = £10% for Method B
sinceit isbiased) and RSE is as defined above. The overall error in the estimation of the population mean
(the RRM SE) would then be 21.54% for Method A and 22.38% for Method B. If the relative biasfor
Method B was 15% rather than 10%, then the RRM SE for Method A would be 21.54% and the RRM SE for
Method B would be 25.02%, so the method difference is even more pronounced. While the aboveillustration
is portrayed in terms of estimation of amean based on a simple random sample, the basic concepts apply
more generaly.

This example servesto illustrate that a method that may be considered preferable from a chemica
point of view (e.g., 85 or 90% recovery, 5% relative standard deviation [RSD]) may not perform aswell ina
statistical application as a method with less bias and greater imprecision (e.g., zero bias, 40% RSD),
especialy when theinherent site variability is large relative to the measurement-error RSD.

5.2.6 “Proof of Safety” vs. “Proof of Hazard”

Because of the basic hypothesis testing philosophy, the null hypothesisis generally specified in terms
of the status quo (e.g., no change or action will take place if null hypothesisis not rejected). Also, sincethe
classical approach exercises direct control over the Type | error rate, thisrate is generally associated with the
error of most concern (for further discussion of this point, see section 1.2). One difficulty, therefore, may be
obtaining a consensus on which error should be of most concern. It is not unlikely that the Agency's
viewpoint in this regard will differ from the viewpoint of the regulated party. In using this philosophy, the
Agency'sideal approach is not only to set up the direction of the hypothesisin such away that controlling the
Type | error protects the health and environment but also to set it up in away that encourages quality (high
precision and accuracy) and minimizes expenditure of resources in situations where decisions are relatively
“easy” (e.g., all observations are far from the threshold level of interest).

In some cases, how one formulates the hypothesis testing problem can lead to very different sampling
requirements. For instance, following remediation activities at a hazardous waste site, one may seek to
answer “Isthe site clean?’ Suppose one attempts to address this question by comparing amean level from
samples taken after the remediation with athreshold level (chosen to reflect “safety”). If the threshold leve is
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near background levels that might have existed in the absence of the contamination, then it may be very
difficult (i.e., require enormous sample sizes) to “prove’ that the siteis“safe.” Thisisbecausethe
concentrations resulting from even ahighly efficient remediation under such circumstances would not be
expected to deviate greatly from such athreshold. A better approach for dealing with this problem may beto
compare the remediated site with areference (“ uncontaminated”) site, assuming that such asite can be
determined.

To avoid excessive expensein collecting and analyzing samples for a contaminant, compromises will
sometimes be necessary. For instance, suppose that asignificance level of 0.05 isto be used; however, the
affordable sample size may be expected to yield atest with power of only 0.40 at some specified parameter
value chosen to have practical significance (see section 5.2.3). One possible way that compromise may be
made in such asituation isto relax the significance levd, for instance, usng o« = 0.10, 0.15, or 0.20. By
relaxing this false positive rate, a higher power (i.e., alower false negativerate [3) can be achieved. An
argument can be made, for example, that one should develop sampling plans and determine sample sizesin
such away that both the Type | and Type |l errors are treated simultaneoudly and in a balanced manner (for
example, designing to achieve « = = 0.15) instead of using the traditional approach of fixing the Type |
error rate at 0.05 or 0.01 and letting P be determined by the sample size. This approach of treating the Typel
and Type Il errors smultaneoudly istaken in the DQO Process and it is recommended that several different
scenarios of o and B be investigated before a decision on specific valuesfor « and  are selected.
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TABLE A-1: CRITICAL VALUESOF STUDENT'St DISTRIBUTION

l1-a
Degrees of
Freedom .70 .75 .80 .85 .90 .95 975 .99 .995

1 0.727 | 1000 | 1376 | 1963 | 3.078 | 6.314 | 12.706 | 31.821 | 63.657

2 0617 | 0816 | 1061 | 1.386 | 1.886 | 2.920 | 4.303 6.965 9.925

3 0584 | 0765 | 0978 | 1250 | 1.638 | 2.353 | 3.182 4.541 5.841

4 0569 | 0741 | 0941 | 1190 | 1533 | 2132 | 2.776 3.747 4.604

5 0559 | 0727 | 0920 | 1.156 | 1476 | 2.015 | 2571 3.365 4.032

6 0553 | 0718 | 0906 | 1.134 | 1.440 | 1.943 | 2447 3.143 3.707

7 0549 | 0711 | 089 | 1119 | 1415 | 1.895 | 2.365 2.998 3.499

8 0546 | 0.706 | 0.889 | 1.108 | 1.397 | 1.860 | 2.306 2.896 3.355

9 0543 | 0703 | 0.883 | 1.100 | 1.383 | 1.833 | 2.262 2.821 3.250
10 0542 | 0700 | 0879 | 1.093 | 1.372 | 1.812 | 2.228 2.764 3.169
11 0540 | 0697 | 0876 | 1.088 | 1.363 | 1.796 | 2.201 2.718 3.106
12 0539 | 069 | 0873 | 1083 | 135 | 1.782 | 2.179 2.681 3.055
13 0538 | 0694 | 0870 | 1.079 | 1.350 | 1.771 | 2.160 2.650 3.012
14 0537 | 0692 | 0868 | 1076 | 1.345 | 1.761 | 2.145 2.624 2977
15 0536 | 0691 | 0866 | 1.074 | 134 1753 | 2131 2.602 2.947
16 0535 | 0690 | 0865 | 1.071 | 1337 | 1.746 | 2.120 2.583 2921
17 0534 | 0689 | 0863 | 1.069 | 1.333 | 1.740 | 2.110 2.567 2.898
18 0534 | 0688 | 0862 | 1.067 | 1.330 | 1.734 | 2101 2.552 2.878
19 0533 | 0688 | 0.861 | 1.066 | 1.328 | 1.729 | 2.093 2.539 2.861
20 0533 | 0687 | 0860 | 1.064 | 1.325 | 1.725 | 2.086 2.528 2.845
21 0532 | 0686 | 0859 | 1.063 | 1.323 | 1.721 | 2.080 2.518 2.831
22 0532 | 0686 | 0858 | 1.061 | 1.321 | 1.717 | 2.074 2.508 2.819
23 0532 | 0685 | 0858 | 1.060 | 1.319 | 1.714 | 2.069 2.500 2.807
24 0531 | 0685 | 0857 | 1059 | 1.318 | 1.711 | 2.064 2.492 2.797
25 0531 | 0684 | 0856 | 1.058 | 1.316 | 1.708 | 2.060 2.485 2.787
26 0531 | 0684 | 0856 | 1.058 | 1.315 | 1.706 | 2.056 2479 2.779
27 0531 | 0684 | 0855 | 1057 | 1.314 | 1.703 | 2.052 2473 2771
28 0530 | 0683 | 0855 | 1.056 | 1.313 | 1.701 | 2.048 2.467 2.763
29 0530 | 0683 | 0.854 | 1.055 | 1.311 | 1.699 | 2.045 2.462 2.756
30 0530 | 0683 | 0.854 | 1.055 | 1.310 | 1.697 | 2.042 2.457 2.750
40 0529 | 0681 | 0851 | 1.050 | 1.303 | 1.684 | 2.021 2.423 2.704
60 0527 | 0679 | 0848 | 1.046 | 1.296 | 1.671 | 2.000 2.390 2.660
120 0526 | 0677 | 0845 | 1.041 | 1.289 | 1.658 1.980 2.358 2.617
oo 0524 | 0674 | 0842 | 1036 | 1.282 | 1.645 1.960 2.326 2.576

Note: Thelast row of thetable (= degrees of freedom) givesthe criticial valuesfor a standard normal distribution (2),
€0., 1, gg5 = Z g5 = 1.645.
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TABLE A-2: CRITICAL VALUESFOR THE STUDENTIZED RANGE TEST

Level of Significance a

0.01 0.05 0.10
n a b a b a b
3 1.737 2.000 1.758 1.999 1.782 1.997
4 1.87 2.445 1.98 2.429 2.04 2.409
5 2.02 2.803 2.15 2.753 2.22 2.712
6 2.15 3.095 2.28 3.012 2.37 2.949
7 2.26 3.338 2.40 3.222 2.49 3.143
8 2.35 3.543 2.50 3.399 2.59 3.308
9 2.44 3.720 2.59 3.552 2.68 3.449
10 251 3.875 2.67 3.685 2.76 3.57
11 2.58 4.012 2.74 3.80 2.84 3.68
12 2.64 4134 2.80 3.91 2.90 3.78
13 2.70 4.244 2.86 4.00 2.96 3.87
14 2.75 4.34 2.92 4.09 3.02 3.95
15 2.80 4.44 2.97 417 3.07 4.02
16 2.84 452 3.01 4.24 3.12 4.09
17 2.88 4.60 3.06 431 3.17 4.15
18 2.92 4.67 3.10 437 3.21 421
19 2.96 474 3.14 443 3.25 427
20 2.99 4.80 3.18 4.49 3.29 4.32
25 3.15 5.06 3.34 471 3.45 453
30 3.27 5.26 3.47 4.89 3.59 4.70
35 3.38 5.42 3.58 5.04 3.70 4.84
40 3.47 5.56 3.67 5.16 3.79 4.96
45 3.55 5.67 3.75 5.26 3.88 5.06
50 3.62 5.77 3.83 5.35 3.95 5.14
55 3.69 5.86 3.90 5.43 4.02 5.22
60 3.75 5.94 3.96 5.51 4.08 5.29
65 3.80 6.01 4.01 5.57 414 5.35
70 3.85 6.07 4.06 5.63 419 5.41
75 3.90 6.13 411 5.68 4.24 5.46
80 3.94 6.18 4.16 5.73 4.28 5.51
85 3.99 6.23 4.20 5.78 4.33 5.56
90 4.02 6.27 4.24 5.82 4.36 5.60
95 4.06 6.32 427 5.86 4.40 5.64
100 4.10 6.36 431 5.90 4.44 5.68
150 4.38 6.64 459 6.18 472 5.96
200 4,59 6.84 478 6.39 4.90 6.15
500 5.13 7.42 5.47 6.94 5.49 6.72
1000 5.57 7.80 5.79 7.33 5.92 7.11
A-4
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TABLE A-3: CRITICAL VALUESFOR THE EXTREME VALUE TEST

(DIXON'S TEST)

Level of Significance a
n 0.10 0.05 0.01
3 0.886 0.941 0.988
4 0.679 0.765 0.889
5 0.557 0.642 0.780
6 0.482 0.560 0.698
7 0.434 0.507 0.637
8 0.479 0.554 0.683
9 0.441 0.512 0.635
10 0.409 0.477 0.597
11 0.517 0.576 0.679
12 0.490 0.546 0.642
13 0.467 0.521 0.615
14 0.492 0.546 0.641
15 0.472 0.525 0.616
16 0.454 0.507 0.595
17 0.438 0.490 0.577
18 0.424 0.475 0.561
19 0.412 0.462 0.547
20 0.401 0.450 0.535
21 0.391 0.440 0.524
22 0.382 0.430 0.514
23 0.374 0.421 0.505
24 0.367 0.413 0.497
25 0.360 0.406 0.489

QA%



TABLE A-4: CRITICAL VALUESFOR DISCORDANCE TEST

Level of Significance a

n 0.01 0.05
3 1.155 1.153
4 1.492 1.463
5 1.749 1.672
6 1.944 1.822
7 2.097 1.938
8 2221 2.032
9 2.323 2.110

10 2410 2.176
11 2.485 2.234
12 2.550 2.285
13 2.607 2331
14 2.659 2371
15 2.705 2.409
16 2.747 2.443
17 2.785 2475
18 2821 2.504
19 2.854 2.532
20 2.884 2.557
21 2912 2.580
22 2.939 2.603
23 2.963 2.624
24 2.987 2.644
25 3.009 2.663
26 3.029 2.681
27 3.049 2.698
28 3.068 2714
29 3.085 2.730
30 3.103 2.745
31 3.119 2.759
32 3.135 2.773

EPA QA/G-9

Level of Significance a

n 0.01 0.05
33 3.150 2.786
34 3.164 2.799
35 3.178 2811
36 3.191 2.823
37 3.204 2.835
38 3.216 2.846
39 3.228 2.857
40 3.240 2.866
41 3.251 2.877
42 3.261 2.887
43 3.271 2.896
44 3.282 2.905
45 3.292 2914
46 3.302 2.923
47 3.310 2931
48 3.319 2.940
49 3.329 2.948
50 3.336 2.956
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TABLE A-5: APPROXIMATE CRITICAL VALUES A, FOR ROSNER'STEST

n r 0.05 | 0.01 n r 0.05 | 0.01 n r 0.05 0.01
25 1 282 | 3.14 32 1 294 | 3.27 39 1 3.03 3.37
2 280 | 3.11 2 292 | 3.25 2 3.01 3.36
3 2.78 | 3.09 3 291 | 3.24 3 3.00 3.34
4 2.76 | 3.06 4 2.89 | 3.22 4 2.99 3.33
5 2.73 | 3.03 5 2.88 | 3.20 5 2.98 3.32
10 | 259 | 2.85 10 | 2.78 | 3.09 10 | 291 3.24
26 1 2.84 | 3.16 33 1 295 | 3.29 40 1 3.04 3.38
2 282 | 314 2 294 | 3.27 2 3.03 3.37
3 280 | 3.11 3 292 | 3.25 3 3.01 3.36
4 2.78 | 3.09 4 291 | 3.24 4 3.00 3.34
5 2.76 | 3.06 5 2.89 | 3.22 5 2.99 3.33
10 | 262 | 2.89 10 | 280 | 3.11 10 | 2.92 3.25
27 1 2.86 | 3.18 34 1 297 | 3.30 41 1 3.05 3.39
2 284 | 3.16 2 295 | 3.29 2 3.04 3.38
3 282 | 314 3 294 | 3.27 3 3.03 3.37
4 280 | 3.11 4 292 | 3.25 4 3.01 3.36
5 2.78 | 3.09 5 291 | 3.24 5 3.00 3.34
10 | 265 | 2.93 10 | 282 | 3.14 10 | 2.94 3.27
28 1 2.88 | 3.20 35 1 298 | 3.32 42 1 3.06 3.40
2 2.86 | 3.18 2 297 | 3.30 2 3.05 3.39
3 284 | 3.16 3 295 | 3.29 3 3.04 3.38
4 282 | 314 4 294 | 3.27 4 3.03 3.37
5 280 | 3.11 5 292 | 3.25 5 3.01 3.36
10 | 268 | 2.97 10 | 284 | 3.16 10 | 2.95 3.29
29 1 2.89 | 3.22 36 1 299 | 3.33 43 1 3.07 341
2 2.88 | 3.20 2 298 | 3.32 2 3.06 3.40
3 2.86 | 3.18 3 297 | 3.30 3 3.05 3.39
4 284 | 3.16 4 295 | 3.29 4 3.04 3.38
5 282 | 3.14 5 294 | 3.27 5 3.03 3.37
10 | 271 | 3.00 10 | 286 | 3.18 10 | 2.97 3.30
30 1 291 | 3.24 37 1 3.00 | 334 44 1 3.08 3.43
2 2.89 | 3.22 2 299 | 3.33 2 3.07 341
3 2.88 | 3.20 3 298 | 3.32 3 3.06 3.40
4 2.86 | 3.18 4 297 | 3.30 4 3.05 3.39
5 284 | 3.16 5 295 | 3.29 5 3.04 3.38
10 | 273 | 3.03 10 | 2.88 | 3.20 10 | 2.98 3.32
31 1 292 | 3.25 38 1 3.01 | 3.36 45 1 3.09 3.44
2 291 | 3.24 2 3.00 | 334 2 3.08 3.43
3 2.89 | 3.22 3 299 | 3.33 3 3.07 341
4 2.88 | 3.20 4 298 | 3.32 4 3.06 3.40
5 2.86 | 3.18 5 297 | 3.30 5 3.05 3.39
10 | 2.76 | 3.06 10 | 291 | 3.22 10 | 2.99 3.33
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TABLE A-5: APPROXIMATE CRITICAL VALUES A, FOR ROSNER'STEST

n r 0.05 | 0.01 n r 0.05 | 0.01 n r 0.05 0.01

46 1 3.09 | 345 70 1 3.26 | 3.62 250 1 3.67 4.04
2 3.09 | 3.4 2 3.25 | 3.62 5 3.67 4.04
3 3.08 | 343 3 325 | 361 10 | 3.66 4.03
4 3.07 | 341 4 3.24 | 3.60
5 3.06 | 3.40 5 3.24 | 3.60
10 | 3.00 | 3.34 10 | 3.21 | 357

47 1 3.10 | 3.46 80 1 3.31 | 3.67 300 1 3.72 4.09
2 3.09 | 345 2 3.30 | 3.67 5 3.72 4.09
3 3.09 | 3.4 3 3.30 | 3.66 10 | 3.71 4.09
4 3.08 | 343 4 3.29 | 3.66
5 3.07 | 341 5 329 | 3.65
10 | 3.01 | 3.36 10 | 3.26 | 3.63

48 1 3.11 | 3.46 90 1 335 | 3.72 350 1 3.77 4.14
2 3.10 | 3.46 2 334 | 3.71 5 3.76 4.13
3 3.09 | 345 3 334 | 3.71 10 | 3.76 4.13
4 3.09 | 3.4 4 3.34 | 3.70
5 3.08 | 343 5 3.33 | 3.70
10 | 3.03 | 3.37 10 | 3.31 | 3.68

49 1 3.12 | 347 100 1 3.38 | 3.75 400 1 3.80 417
2 3.11 | 3.46 2 3.38 | 3.75 5 3.80 417
3 3.10 | 3.46 3 3.38 | 3.75 10 | 3.80 4.16
4 3.09 | 345 4 337 | 3.74
5 3.09 | 3.4 5 337 | 3.74
10 | 3.04 | 3.38 10 | 335 | 3.72

50 1 3.13 | 348 150 1 352 | 3.89 450 1 3.84 4.20
2 3.12 | 347 2 351 | 3.89 5 3.83 4.20
3 3.11 | 3.46 3 351 | 3.89 10 | 3.83 4.20
4 3.10 | 3.46 4 351 | 3.88
5 3.09 | 345 5 351 | 3.88
10 | 3.05 | 3.39 10 | 350 | 3.87

60 1 3.20 | 3.56 200 1 3.61 | 3.98 500 1 3.86 4.23
2 3.19 | 355 2 3.60 | 3.98 5 3.86 4.23
3 3.19 | 355 3 3.60 | 3.97 10 | 3.86 4.22
4 3.18 | 354 4 3.60 | 3.97
5 3.17 | 353 5 3.60 | 3.97
10 | 3.14 | 3.49 10 | 359 | 3.96

EPA QA/G-9 A-8
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TABLE A-6: QUANTILESOF THE WILCOXON SIGNED RANKSTEST

EPA QA/G-9

n W1 W5 W0 W0
4 0 0 1 3

5 0 1 3 4

6 0 3 4 6

7 1 4 6 9

8 2 6 9 12
9 4 9 11 15
10 6 11 15 19
11 8 14 18 23
12 10 18 22 28
13 13 22 27 33
14 16 26 32 39
15 20 31 37 45
16 24 36 43 51
17 28 42 49 58
18 33 48 56 66
19 38 54 63 74
20 44 61 70 82

A-9

QA%



TABLE A-7: CRITICAL VALUES FOR THE RANK-SUM TEST

m
n
* 12 3| 4| 5] 6| 7| 8| of 10| 12| 12| 13| 14| 15| 16| 17| 18| 19| 20
2l00s o] ol o 2| 2| 2| 2| 2 2| 2| 3| 3 4 4 4 4 5 5 5
010 o] 21| 1| 2| 2| 2f 3| 3| 4| 4] 5] 5 5 6 6 7 7 8 8
3loos o] 1| 2| 2| 3| 3| 4 s| 5 6| 6| 7 8 8 of 10 10 12| 122
010 | 2] 2| 2| 3| 4| s| e 6| 7| 8] 9] 10| 11| 11| 12| 13| 14| 15| 16
4]o0os ol 2| 2| 3| 4| s| e 7| 8| o] 10| 12| 12| 13| 15| 16| 17| 18| 19
010 | 1] 2| 4| 5| 6| 7| 8| 10| 12| 12] 13] 14| 16| 17| 18| 19| 21| 22| 23
5{o0os | 1| 2| 3| 5| 6| 7| 9| 10| 12 13| 14| 16| 17| 19| 20| 21| 23| 24| 26
010 | 2| 3] 5| 6| 8| 9of 11| 13| 14| 16| 18] 19| 21| 23| 24| 26| 28| 29| 31
6|oos | 1| 3| 4| 6| 8| of 12| 13| 15[ 17| 18| 20| 22| 24| 26| 27| 20| 31| 33
010 | 2| 4| 6| 8| 10| 12| 14| 16| 18| 20| 22| 24| 26| 28| 30| 32| 35| 37| 39
71005 | 1| 3| 5| 7| 9| 12| 14| 16| 18| 20| 22| 25| 27| 20| 31| 3| 36| 38| 40
010 | 2| 5| 7| 9| 12| 14| 17| 10| 22| 24| 27| 20| 32| 34| 37| 39| 42| 44| 47
gloos | 2| 4| 6| o 11| 14| 16| 19| 21| 24| 27| 20| 32| 34| 37| 40| 42| 45| 48
010 | 3] 6| 8] 11| 14| 17| 20| 23| 25| 28| 31| 34| 37| 40| 43| 46| 49| 52| 55
9loos | 2] 5| 7| 10| 13| 16| 19| 22| 25 28| 31| 34| 37| 40| 43| 46| 49| 52| 55
010 | 3] 6] 10| 13| 16| 19| 23| 26| 20| 32| 36| 39| 42| 46| 49| 53| 56| 59| 63
10005 | 2| 5| 8| 12| 15| 18| 21| 25| 28| 32| 35| 38| 42| 45| 49| 52| 56| 59| 63
010 | 4| 7| 11| 14| 18| 22| 25| 20| 33| 37| 40| 44| 48| 52| 55| 59| 63| 67| 71
11 (005 | 2| 6| of 13| 17| 20| 24| 28| 32| 35| 39| 43| 47| 51| 55| 58| 62| 66| 70
010 | 4| 8] 12| 16| 20| 24| 28| 32| 37| 41| 45| 49| 53| 58| 62| 66| 70| 74| 79
12005 | 3| 6| 10| 14| 18| 22| 27| 31| 35| 39| 43| 48| 52| 56| 61| 65| 69| 73| 78
010 | 5] 9| 13| 18| 22| 27| 31| 36| 40| 45| 50| 54| 59| 64| 68| 73| 78| 82| 87
13005 | 3| 7| 12| 16| 20| 25| 29| 34| 38| 43| 48| 52| 57| 62| 66| 71| 76| 81| 85
010 | 5] 10) 14| 19| 24| 29| 34| 30| 44| 40| 54| 59| 64| 69| 75| 8| 8| 90| 95
14 (005 | 4| 8| 12| 17| 22| 27| 32| 37| 42| 47| 52| 57| 62| 67| 72| 78| 83| 88| 93
010 | 5] 11| 16| 21| 26| 32| 37| 42| 48| 53| 59| 64| 70| 75| 81| 8| 92| 98| 103
15005 | 4| 8| 13| 19| 24| 20| 34| 40| 45| 51| 56| 62| 67| 73| 78| 8| 8| 95| 101
010 | 6] 11) 17| 23| 28| 34| 40| 46| 52| 58] 64] 69| 75| 81| 87| 93| 99| 105| 111
EPA QA/G-9 A-10A QA97



m
n

* 12 3| 4| 5| 6| 7| 8| o 10| 12| 12| 13| 24| 15| 16| 17| 18| 19| 20

16 |005 | 4| of 15| 20| 26| 31| 37| 43| 49| 55| 61| 66| 72| 78| 84| 90| 96| 102 108
010 | 6] 12| 18| 24| 30| 37| 43| 49| 55| 62| 68| 75| 81| 87| 94| 100| 107| 113| 120
17005 | 4| 10| 16| 21| 27| 34| 40| 46| 52| 58| 65| 72| 78| 8| 90| 97| 103| 110| 116
020 | 7] 13| 19| 26| 32| 39| 46| 53| 59| 66| 73| 80| 86| 93| 100| 107 | 114 | 121 | 128
181005 | 5| 10| 17| 23| 29| 36| 42| 40| 56| 62| 69| 76| 83| 89| 96| 103| 110| 117 | 124
010 | 7| 14| 21| 28| 35| 42| 49| 56| 63| 70| 78| 85| 92| 99| 107 | 124 121 | 129 | 136
19005 | 5| 11| 18| 24| 31| 38| 45| 52| 59| 66| 73| 81| 88| o5 102| 110| 1127 | 124 | 131
010 | 8] 15| 22| 29| 37| 44| 52| 59| 67| 74| 82| 90| 98| 105| 113| 121 | 129 | 136 | 144

20 (005 | 5| 12| 19| 26| 33| 40| 48| 55| 63| 70| 78| 85| 93| 101 | 108| 116 | 124 | 131 | 139
010 8 16 23 il 39 47 55 63 71 79 87 95 103 111 120 128 136 144 | 52

EPA QA/G-9 A-10B QA97



TABLE A-8 PERCENTILESOF THE CHI-SQUARE DISTRIBUTION

1-«a

v
.005 .010 .025 .050 .100 .900 .950 .975 .990 .995
1 0.0*393 0.0%157 0.0°982 0.0393 | 0.0158 2.71 3.84 5.02 6.63 7.88
2 0.0100 0.0201 0.0506 0.103 0.211 461 5.99 7.38 9.21 | 10.60
3 0.072 0.115 0.216 0.352 0.584 6.25 7.81 935 | 11.34 | 12.84
4 0.207 0.297 0.484 0.711 1.064 7.78 949 | 11.14 | 13.28 | 14.86
5 0.412 0.554 0.831 1.145 1.61 9.24 | 11.07 | 1283 | 15.09 | 16.75
6 0.676 0.872 1.24 1.64 220 | 1064 | 1259 | 1445 | 16.81 | 18.55
7 0.989 1.24 1.69 2.17 283 | 12.02 | 1407 | 16.01 | 18.48 | 20.28
8 1.34 1.65 2.18 2.73 349 | 1336 | 1551 | 1753 | 20.09 | 21.96
9 1.73 2.09 2.70 3.33 417 | 1468 | 16.92 | 19.02 | 21.67 | 23.59
10 2.16 2.56 3.25 3.94 487 | 1599 | 18.31 | 2048 | 23.21 | 25.19
11 2.60 3.05 3.82 3.57 558 | 1728 | 19.68 | 21.92 | 24.73 | 26.76
12 3.07 3.57 4.40 5.23 6.30 | 1855 | 21.03 | 23.34 | 26.22 | 28.30
13 3.57 411 5.01 5.89 7.04 | 1981 | 2236 | 24.74 | 27.69 | 29.82
14 4.07 4.66 5.63 6.57 779 | 21.06 | 2368 | 26.12 | 29.14 | 31.32
15 4.60 5.23 6.26 7.26 855 | 2231 | 25.00 | 27.49 | 30.58 | 32.80
16 5.14 5.81 6.91 7.96 931 | 2354 | 26.30 | 28.85 | 32.00 | 34.27
17 5.70 6.41 7.56 8.67 10.09 | 2477 | 2759 | 30.19 | 33.41 | 35.72
18 6.26 7.01 8.23 9.39 1086 | 2599 | 28.87 | 31.53 | 34.81 | 37.16
19 6.84 7.63 8.91 10.12 1165 | 2720 | 30.14 | 32.85 | 36.19 | 38.58
20 7.43 8.26 9.59 10.85 1244 | 2841 | 3141 | 34.17 | 37.57 | 40.00
21 8.03 8.90 10.28 11.59 13.24 | 29.62 | 32.67 | 35.48 | 38.93 | 41.40
22 8.64 9.54 10.98 12.34 14.04 | 3081 | 3392 | 36.78 | 40.29 | 42.80
23 9.26 10.20 11.69 13.09 1485 | 3201 | 35.17 | 38.08 | 41.64 | 44.18
24 9.89 10.86 12.40 13.85 1566 | 33.20 | 36.42 | 39.36 | 42.98 | 45.56
25 10.52 11.52 13.12 14.61 16.47 | 3438 | 37.65 | 40.65 | 44.31 | 46.93
26 11.16 12.20 13.84 15.38 1729 | 3556 | 38.89 | 41.92 | 45.64 | 48.29
27 11.81 12.88 14.57 16.15 18.11 | 36.74 | 40.11 | 43.19 | 46.96 | 49.64
28 12.46 13.56 15.31 16.93 1894 | 3792 | 41.34 | 44.46 | 48.28 | 50.99
29 13.12 14.26 16.05 17.71 19.77 | 39.09 | 4256 | 45.72 | 49.59 | 52.34
30 13.79 14.95 16.79 18.49 20.60 | 40.26 | 43.77 | 46.98 | 50.89 | 53.67
40 20.71 22.16 24.43 26.51 29.05 | 51.81 | 55.76 | 59.34 | 63.69 | 66.77
50 27.99 29.71 32.36 34.76 37.69 | 63.17 | 6750 | 7142 | 76.15 | 79.49
60 35.53 37.48 40.48 43.19 46.46 | 7440 | 79.08 | 83.30 | 88.38 | 91.95
70 43.28 45.44 48.76 51.74 53.33 | 8553 | 90.53 | 95.02 | 100.4 | 104.2
80 51.17 53.54 57.15 60.39 64.28 | 96.58 | 1019 | 106.6 | 112.3 | 116.3
90 59.20 61.75 65.65 69.13 7329 | 1076 | 113.1 | 118.1 | 124.1 | 128.3
100 67.33 70.06 74.22 77.93 82.36 | 1185 | 124.3 | 129.6 | 135.8 | 140.2
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TABLE A-9: PERCENTILESOF THE F DISTRIBUTION

Degrees Degrees of Freedom for Numerator

Freedom

for

Denom- 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 60 120 o

inator

1 .50 1.00 1.50 171 1.82 1.89 194 1.98 2.00 2.03 2.04 2.07 2.09 212 213 2.15 217 2.18 2.20
.90 39.9 495 53.6 55.8 57.2 58.2 58.9 59.4 59.9 60.2 60.7 61.2 61.7 62.0 62.3 62.8 63.1 63.3
.95 161 200 216 225 230 234 237 239 241 242 244 246 248 249 250 252 253 254
.975 648 800 864 900 922 937 948 957 963 969 977 985 993 997 1001 1010 1014 1018
.99 4052 | 5000 5403 5625 5764 5859 5928 5981 6022 6056 6106 6157 6209 6235 6261 6313 6339 6366

2 50 | 0.667 1.00 1.13 121 1.25 1.28 1.30 132 1.33 134 1.36 1.38 1.39 1.40 141 1.43 1.43 1.44
.90 853 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.48 9.49
.95 185 19.0 19.2 19.2 19.3 19.3 194 194 194 194 194 194 194 195 195 195 195 195
.975 385 39.0 39.2 39.2 39.3 39.3 394 394 394 394 394 394 394 395 395 395 395 395
.99 98.5 99.0 99.2 99.2 99.3 99.3 99.4 99.4 99.4 99.4 99.4 99.4 99.4 99.5 99.5 99.5 99.5 99.5

3 50| 0585 | 0.881 1.00 1.06 1.10 1.13 1.15 1.16 117 1.18 1.20 121 123 1.23 124 125 1.26 127
.90 5.54 5.46 5.39 5.34 531 5.28 5.27 525 5.24 523 522 5.20 5.18 5.18 517 5.15 5.14 513
.95 10.1 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.64 8.62 8.57 8.55 853
.975 174 16.0 15.4 15.1 14.9 14.7 14.6 145 145 14.4 14.3 14.3 14.2 14.1 14.1 14.0 13.9 13.9
.99 34.1 30.8 29.5 28.7 28.2 27.9 27.7 275 27.3 27.2 27.1 26.9 26.7 26.6 26.5 26.3 26.2 26.1

4 50| 0549 | 0.828 | 0.941 1.00 1.04 1.06 1.08 1.09 1.10 111 1.13 114 1.15 1.16 1.16 1.18 1.18 1.19
.90 454 4.32 4.19 411 4.05 4.01 3.98 3.95 3.94 3.92 3.90 3.87 3.84 3.83 3.82 3.79 3.78 3.76
.95 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 591 5.86 5.80 5.77 5.75 5.69 5.66 5.63
.975 12.2 10.6 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84 8.75 8.66 8.56 851 8.46 8.36 831 8.26
.99 21.2 18.0 16.7 16.0 155 15.2 15.0 14.8 14.7 145 14.4 14.2 14.0 13.9 13.8 13.7 13.6 135
.999 74.1 61.2 56.2 53.4 51.7 50.5 49.7 49.0 48.5 48.1 47.4 46.8 46.1 45.8 45.4 44.7 44.4 44.1

5 50| 0528 | 0.799 | 0.907 0.965 1.00 1.02 1.04 1.05 1.06 1.07 1.09 1.10 111 112 112 114 114 1.15
.90 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.39 3.27 3.24 321 3.19 3.17 3.14 3.12 311
.95 6.61 5.79 541 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 453 4.50 4.43 4.40 4.37
.975 10.0 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.52 6.43 6.33 6.28 6.23 6.12 6.07 6.02
.99 16.3 13.3 12.1 114 11.0 10.7 10.5 10.3 10.2 10.1 9.89 9.72 9.55 9.47 9.38 9.20 9.11 9.02
.999 47.2 37.1 33.2 31.1 29.8 28.8 28.2 27.6 27.2 26.9 26.4 25.9 25.4 25.1 24.9 24.3 24.1 23.8

6 .50 | 0515 | 0.780 | 0.886 | 0.942 | 0.977 1.00 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 111 112 112
.90 3.78 3.46 3.29 3.18 311 3.05 3.01 2.98 2.96 294 2.90 2.87 2.84 2.82 2.80 2.76 2.74 272
.95 5.99 5.14 4.76 453 4.39 4.28 421 4.15 4.10 4.06 4.00 3.94 3.87 3.84 381 3.74 3.70 3.67
.975 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.37 5.27 517 512 5.07 4.96 4.90 4.85
.99 22.8 10.9 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56 7.40 7.31 7.23 7.06 6.97 6.88
.999 355 27.0 237 219 20.8 20.0 19.5 19.0 18.7 184 18.0 17.6 171 16.9 16.7 16.2 16.0 15.7
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TABLE A-9: PERCENTILESOF THE F DISTRIBUTION

Degrees Degrees of Freedom for Numerator
Freedom
for
Denom- 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 60 120 o
inator
7 50| 0506 | .0767 | 0.871 0.926 | 0.960 | 0.983 1.00 1.01 1.02 1.03 1.04 1.05 1.07 1.07 1.08 1.09 1.10 1.10
.90 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 272 2.70 2.67 2.63 2.59 2.58 2.56 251 2.49 247
.95 5.59 4.74 4.35 412 3.97 3.87 3.79 3.73 3.68 3.64 3.57 351 3.44 341 3.38 3.30 3.27 3.23
.975 8.07 6.54 5.89 5.52 529 5.12 4.99 4.90 4.82 4.76 4.67 457 4.47 4.42 4.36 4.25 4.20 4.14
.99 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.31 6.16 6.07 5.99 5.82 5.74 5.65
.999 29.2 21.7 18.8 17.2 16.2 15.5 15.0 14.6 14.5 14.1 13.7 13.3 12.9 12.7 12.5 12.1 11.9 11.7
8 50| 0499 | 0.757 | 0.860 | 0.915 | 0948 | 0.971 | 0.988 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.08 1.09
.90 3.46 311 292 281 2.73 2.67 2.62 2.59 2.56 254 2.50 2.46 242 2.40 2.38 234 2.32 2.29
.95 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.12 3.08 3.01 297 293
.975 7.57 6.06 5.42 5.05 4.82 4.65 453 4.43 4.36 4.30 4.20 4.10 4.00 3.95 3.89 3.78 3.73 3.67
.99 11.3 8.65 7.59 7.01 6.63 6.37 6.18 6.03 591 5.81 5.67 5.52 5.36 5.28 5.20 5.03 4.95 4.86
.999 25.4 18.5 15.8 14.4 13.5 12.9 12.4 12.0 11.8 115 11.2 10.8 10.5 10.3 10.1 9.73 9.53 9.33
9 50| 0494 | 0.749 | 0.852 0.906 | 0939 | 0.962 | 0.978 | 0.990 1.00 1.01 1.01 1.03 1.04 1.05 1.05 1.07 1.07 1.08
.90 3.36 3.01 281 2.69 261 2.55 251 247 244 242 2.38 234 2.30 2.28 2.25 221 2.18 2.16
.95 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 294 2.90 2.86 2.79 2.75 271
.975 7.21 571 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96 3.87 3.77 3.67 3.61 3.56 3.45 3.39 3.33
.99 10.6 8.02 6.99 6.42 6.06 5.80 5.61 5.47 535 5.26 511 4.96 481 4.73 4.65 4.48 4.40 431
.999 22.9 16.4 13.9 12.6 11.7 11.1 10.7 10.4 10.1 9.89 9.57 9.24 8.90 8.72 8.55 8.19 8.00 7.81
10 50 | 0490 | 0.743 | 0.845 | 0.899 | 0932 | 0.954 | 0971 0.983 | 0.992 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.06 1.07
.90 3.29 292 2.73 261 252 2.46 241 2.38 235 232 2.28 224 2.20 2.18 2.16 211 2.08 2.06
.95 4.96 4.10 371 3.48 3.33 3.22 3.14 3.07 3.02 2.98 291 2.84 2.77 2.74 2.70 2.62 2.58 254
.975 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 3.62 3.52 3.42 3.37 331 3.20 3.14 3.08
.99 10.0 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 471 4.56 441 4.33 4.25 4.08 4.00 391
.999 21.0 14.9 12.6 11.3 10.5 9.93 9.52 9.20 8.96 8.75 8.45 8.13 7.80 7.64 7.47 7.12 6.94 6.76
12 50 | 0484 | 0735 | 0.835 | 0.888 | 0921 | 0.943 | 0959 | 0972 | 0.981 0.989 1.00 1.01 1.02 1.03 1.03 1.05 1.05 1.06
.90 3.18 281 2.61 248 2.39 2.33 2.28 224 221 2.19 215 2.10 2.06 2.04 2.01 1.96 1.93 1.90
.95 4.75 3.89 3.49 3.26 311 3.00 291 2.85 2.80 2.75 2.69 2.62 254 251 247 2.38 234 2.30
.975 6.55 5.10 4.47 412 3.89 3.73 3.61 351 3.44 3.37 3.28 3.18 3.07 3.02 2.96 2.85 2.79 272
.99 9.33 6.93 5.95 541 5.06 4.82 4.64 4.50 4.39 4.30 4.16 4.01 3.86 3.78 3.70 354 3.45 3.36
.999 18.6 13.0 10.8 9.63 8.89 8.38 8.00 7.71 7.48 7.29 7.00 6.71 6.40 6.25 6.09 5.76 5.59 5.42
15 50 | 0478 | 0.726 | 0.826 | 0.878 | 0911 | 0.933 | 0.949 | 0960 | 0.970 | 0.977 | 0.989 1.00 1.01 1.02 1.02 1.03 1.04 1.05
.90 3.07 2.70 2.49 2.36 227 221 2.16 212 2.09 2.06 2.02 197 1.92 1.90 1.87 1.82 1.79 1.76
.95 454 3.68 3.29 3.06 2.90 2.79 271 2.64 2.59 254 248 2.40 2.33 2.29 2.25 2.16 211 2.07
.975 6.20 4.77 4.15 3.80 3.58 341 3.29 3.20 3.12 3.06 2.96 2.86 2.76 2.70 2.64 252 2.46 2.40
.99 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.67 3.52 3.37 3.29 321 3.05 2.96 2.87
.999 16.6 11.3 9.34 8.25 7.57 7.09 6.74 6.47 6.26 6.08 5.81 554 525 5.10 4.95 4.64 4.48 431
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TABLE A-9: PERCENTILESOF THE F DISTRIBUTION

Degrees Degrees of Freedom for Numerator
Freedom
for
Denom- 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 60 120 o
inator
20 50 | 0472 | 0.718 | 0816 | 0.868 | 0.900 | 0.922 | 0938 | 0950 | 0.959 | 0.966 | 0.977 0.989 1.00 1.01 1.01 1.02 1.03 1.03
.90 297 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 194 1.89 184 1.79 1.77 1.74 1.68 164 161
.95 4.35 3.49 3.10 2.87 271 2.60 251 245 2.39 2.35 2.28 2.20 212 2.08 2.04 1.95 1.90 184
.975 5.87 4.46 3.86 351 3.29 3.13 3.01 291 2.84 277 2.68 257 2.46 241 2.35 222 2.16 2.09
.99 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.23 3.09 294 2.86 2.78 2.61 252 242
.999 14.8 9.95 8.10 7.10 6.46 6.02 5.69 5.44 5.24 5.08 4.82 4.56 4.29 4.15 4.00 3.70 3.54 3.38
24 50 | 0469 | 0.714 | 0.812 0.863 | 0.895 | 0.917 | 0.932 0.944 | 0.953 | 0.961 | 0.972 0.983 | 0.994 1.00 1.01 1.02 1.02 1.03
.90 293 254 2.33 2.19 2.10 2.04 1.98 194 191 1.88 1.83 1.78 1.73 1.70 1.67 161 157 153
.95 4.26 3.40 3.01 2.78 2.62 251 242 2.36 2.30 2.25 218 211 2.03 1.98 194 184 1.79 1.73
.975 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70 264 254 244 2.33 227 221 2.08 2.01 194
.99 7.82 6.66 4.72 422 3.90 3.67 3.50 3.36 3.26 3.17 3.03 2.89 2.74 2.66 2.58 2.40 231 221
.999 14.0 9.34 7.55 6.59 5.98 5.55 5.23 4.99 4.80 4.64 4.39 4.14 3.87 3.74 3.59 3.29 3.14 2.97
30 .50 | 0.466 | 0.709 | 0.807 0.858 | 0.890 | 0.912 | 0.927 0939 | 0948 | 0.955 | 0966 | 0.978 | 0.989 | 0.994 1.00 1.01 1.02 1.02
.90 2.88 2.49 2.28 214 2.05 1.98 1.93 1.88 1.85 1.82 177 172 1.62 164 161 154 1.50 1.46
.95 417 3.32 292 2.69 253 242 2.33 227 221 2.16 2.09 2.01 1.93 1.89 184 1.74 1.68 1.62
.975 557 4.18 3.59 325 3.03 2.87 2.75 2.65 257 251 241 231 2.20 214 2.07 194 1.87 1.79
.99 7.56 5.39 451 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.84 2.70 2.55 247 2.39 221 211 2.01
.999 13.3 8.77 7.05 6.12 5.53 5.12 4.82 4.58 4.39 4.24 4.00 3.75 3.49 3.36 3.22 2.92 2.76 2.59
60 50 | 0461 | 0.701 | 0.798 | 0.849 | 0.880 | 0.901 | 0.917 0.928 | 0.937 0945 | 0.956 | 0.967 | 0978 | 0.983 | 0.989 1.00 1.01 1.01
.90 2.79 2.39 2.18 2.04 1.95 1.87 1.82 177 1.74 171 1.66 1.60 154 151 1.48 1.40 135 1.29
.95 4.00 3.15 2.76 253 237 2.25 217 2.10 2.04 1.99 1.92 184 1.75 1.70 1.65 153 147 1.39
.975 5.29 3.93 3.34 3.01 2.79 2.63 251 241 2.33 227 217 2.06 194 1.88 1.82 1.67 1.58 1.48
.99 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 272 2.63 2.50 235 2.20 212 2.03 184 1.73 1.60
.999 12.0 7.77 6.17 5.31 4.76 4.37 4.09 3.86 3.69 3.54 3.32 3.08 2.83 2.69 2.55 2.25 2.08 1.89
120.90 2.75 2.35 213 1.99 1.90 1.82 1.77 172 1.68 1.65 1.60 155 1.48 1.45 141 132 1.26 1.19
.95 3.92 3.07 2.68 245 2.29 2.18 2.09 2.02 1.96 191 1.83 1.75 1.66 161 155 1.43 135 125
.975 5.15 3.80 3.23 2.89 2.67 252 2.39 2.30 222 2.16 2.05 1.95 1.82 1.76 1.69 153 1.43 131
.99 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 247 234 2.19 2.03 1.95 1.86 1.66 153 1.38
.999 11.4 7.32 5.78 4.95 4.42 4.04 3.77 3.55 3.38 3.24 3.02 2.78 2.53 2.40 2.26 1.95 1.77 1.54
= .90 271 2.30 2.08 194 1.85 1.77 172 1.67 1.63 1.60 1.55 1.49 142 1.38 134 124 117 1.00
.95 3.84 3.00 2.60 237 221 2.10 2.01 194 1.88 1.83 1.75 1.67 157 152 1.46 132 122 1.00
.975 5.02 3.69 3.12 2.79 257 | 2241 2.29 219 211 2.05 194 1.83 171 164 157 1.39 127 1.00
.99 6.63 461 3.78 3.32 3.02 2.80 2.64 251 241 2.32 2.18 2.04 1.88 1.79 1.70 147 132 1.00
.999 10.8 6.91 5.42 4.62 4.10 3.74 3.47 3.27 3.10 2.96 2.74 251 227 213 1.99 1.66 1.45 1.00
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TABLE A-10: VALUESOF THE PARAMETER i FOR COHEN'SESTIMATES
ADJUSTING FOR NONDETECTED VALUES

vy | .01 02 03 04 05 06 07 08 .09 10 15 .20
.00 [.010100 .020400 .030902 .041583 .052507 .063625 .074953 .08649 .00824 .11020 .17342 .2426
05 |.010551 .021204 .032225 043350 .054670 .066159 .077909 .08983 .10197 .11431 .17925 .2503
10 [.010050 .022082 .033398 .044902 .056596 .068483 .080563 .09285 .10534 .11804 .18479 .2574
15 [.011310 .022798 .034466 .046318 .058356 .070586 .083009 .09563 .10845 .12148 .18985 .2640
20 |.011642 023459 .035453 .047829 .059990 .072539 .085280 .09822 .11135 .12469 .19460 .2703
25 |.011952 024076 .036377 .048858 .061522 .074372 .087413 .10065 .11408 .12772 .19910 .2762
30 [.012243 024658 .037249 .050018 .062969 .076106 .089433 .10295 .11667 .13059 .20338 .2819
35 [.012520 .025211 .038077 .051120 .064345 .077736 .001355 .10515 .11914 .13333 .20747 .2873
40 |.012784 025738 .038866 .052173 .065660 .079332 .093193 .10725 .12150 .13595 .21129 .2925
45 |.013036 026243 .039624 053182 .066921 .080845 .004958 .10926 .12377 .13847 .21517 .2976
50 [.013279 026728 .040352 .054153 .068135 .082301 .096657 .11121 .12505 .14090 .21882 .3025
55 |.013513 027196 .041054 055089 .069306 .083708 .098298 .11208 .12806 .14325 .22225 .3072
60 [.013739 027849 .041733 055995 .070439 .085068 .099887 .11490 .13011 .14552 .22578 .3118
65 |.013958 028087 .042391 .056874 .071538 .086388 .10143 .11666 .13209 .14773 .22910 .3163
70 |.014171 028513 .043030 .057726 .072505 .087670 .10202 .11837 .13402 .14987 .23234 .3206
75 |.014378 020927 043652 058556 .073643 .088017 .10438 .12004 .13500 .15196 .23550 .3248
80 [.014579 020330 .044258 059364 .074655 .090133 .10580 .12167 .13775 .15400 .23858 .3290
85 [.014773 020723 .044848 060153 .075642 .001319 .10719 .12225 .13952 .15509 .24158 .3330
90 |.014967 030107 .045425 060923 .075606 .092477 .10854 .12480 .14126 .15793 .24452 .3370
95 |.015154 030483 .045989 .061676 .077549 .093611 .10987 .12632 .14297 .15083 .24740 .3409
1.00 |.015338 030850 .046540 .062413 .078471 .004720 11116 .12780 .14465 .16170 .25022 .3447
h
y 25 30 35 40 45 50 55 60 65 70 80 .90
.00 31862 4021 .4941 5961 .7096 .8388 .9808 1145 1336 1561 2176 3.283
05 32793 4130 5066 6101 .7252 .8540 .9994 1166 1358 1585 2203 3.314
10 33662 4233 5184 6234 .7400 8703 1017 1185 1379 1608 2229 3.345
15 34480 4330 5206 6361 .7542 .8860 1035 1204 1400 1630 2255 3.376
20 35255 4422 5403 6483 7673 9012 1051 1222 1419 1651 2280 3.405
25 35003 4510 5506 .6600 .7810 9158 1067 1240 1439 1672 2305 3.435
30 36700 4505 5604 6713 .7937 9300 1083 1257 1457 1693 2329 3.464
35 37379 4676 5699 6821 .8060 9437 1098 1274 1475 1713 2353 3.492
40 38033 4735 5791 6927 .8179 9570 1113 1200 1494 1732 2376 3520
45 38665 4831 5880 .7029 .8295 9700 1127 1306 1511 1751 2399 3.547
50 30276 4904 5967 7129  .8408 9826 1141 1321 1528 1770 2421 3575
55 39679 4976 6061 7225 .8517 9950 1155 1337 1545 1788 2443 3.601
60 40447 5045 6133 7320 .8625 1.007 1169 1351 1561 1.806 2.465 3.628
65 41008 5114 6213 7412 8729 1019 1182 1368 1577 1.824 2486 3.654
70 41555 5180 .62901 7502  .8832 1.030 1195 1380 1593 1.841 2507 3.679
75 42000 5245 6367 7500 .8932 1042 1207 1394 1608 1851 2528 3.705
80 42612 5308 6441 7676 .9031 1053 1220 1408 1624 1875 2548 3.730
85 43122 5370 6515 7781 .9127 1064 1232 1422 1639 1892 2568 3.754
.90 43622 5430 6586 7844 9222 1074 1244 1435 1653 1908 2588 3.779
95 44112 5490 6656 7925 .9314 1.085 1255 1.448 1668 1924 2.607 3.803
1.00 | .44502 5548 6724 8005 .9406 1095 1287 1461 1882 1940 2626 3.827
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TABLE A-11: PROBABILITIESFOR THE SMALL-SAMPLE MANN-KENDALL TEST FOR TREND

n n
S 4 5 8 9 S 6 7 10
00625 0592 0548 0.540 10500 0500 0500
20375 0408 0452 0.460 3(0360 038 0431
4|o0167 0242 0360 0.381 5(0235 0281 0364
60042 0117 0274 0.306 7013 0191 0300
8 0042  0.199 0.238 90068 0199 0242
10 0.0083  0.138 0.179 11| 0028 0068  0.190
12 0.089 0.130 13| 00083 0035  0.146
14 0.054 0.090 15 | 00014 0015  0.108
16 0.031 0.060 17 0.0054  0.078
18 0.016 0.038 19 0.0014  0.054
20 00071 0022 21 0.00020  0.036
22 00028 0012 23 0.023
24 0.00087  0.0063 25 0.014
26 0.00019  0.0029 27 0.0083
28 0.000025  0.0012 29 0.0046
30 0.00043 31 0.0023
32 0.00012 33 0.0011
34 0.000025 | 35 0.00047
36 0.0000028 | 37 0.00018
39 0.0000458
41 0.0000415
43 0.0000028
45 0.00000028
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APPENDIX B: REFERENCES

This appendix provides references for the topics and procedures described in this document. The
references are broken into three groups. Primary, Basic Statistics Textbooks, and Secondary. This
classification does not refer in any way to the subject matter content but to the relevance to the intended
audience for this document, ease in understanding statistical concepts and methodol ogies, and accessability to
the non-gtatistical community. Primary references are those thought to be of particular benefit as hands-on
materia, where the degree of sophistication demanded by the writer seldom requires extensivetraining in
gatistics; most of these references should be on an environmenta statistician’s bookshelf. Referencesto
specific chapters within the primary references are provided in Table B-1 (at the end of this appendix) for
each specific topic. Secondary references are original research works, theoretical discussions or expositions,
or methodol ogies needing further development before being immediately adaptable to environmental
problems. Referencesfor original research works are listed in Table B-2 (at the end of this appendix) for
topics described in this guidance. Users of this document are encouraged to send recommendations on
additiond referencesto the address listed in the Foreword.

Some sections within the chapters reference materials found in most introductory statistics books.
This document uses Walpole and Myers (1985), Freedman, Pisani, Purves, and Adhakari (1991), Mendenhall
(1987), and Dixon and Massey (1983). Table B-1 (at the end of this appendix) lists specific chaptersin these
books where topics contained in this guidance may be found. Thislist could be extended much further by use
of other basic textbooks; thisis acknowledged by the simple statement that further information is available
from introductory text books.

Some important books specific to the analysis of environmental datainclude: Gilbert (1987), an
excellent all-round handbook having strength in sampling, estimation, and hot-spot detection; Gibbons
(1994), abook specifically concentrating on the application of statistics to groundwater problems with
emphasis on method detection limits, censored data, and the detection of outliers; and Madansky (1988), a
slightly more theoretical volume with important chapters on the testing for Normality, transformations, and
testing for independence. In addition, Ott (1995) describes modeling, probabilistic processes, and the
Lognormal distribution of contaminants, and Berthouex and Brown (1994) provide an engineering approach
to problemsincluding estimation, experimental design and the fitting of models.

B.1 CHAPTER 1

Chapter 1 establishes the framework of qualitative and quantitative criteria against which the data
that has been collected will be assessed. The most important feature of this chapter is the concept of the test
of hypotheses framework which is described in any introductory textbook. A non-technical exposition of
hypothesis testing is also to be found in U.S. EPA (1994a, 1994b) which provides guidance on planning for
environmental data collection.

A full discussion of sampling methods with the attendant theory are to be found in Gilbert (1987)
and a shorter discussion may be found in U.S. EPA (1989). Cochran (1966) and Kish (1965) also provide
more advanced theoretical concepts but may require the assistance of a atistician for full comprehension.
More sophisticated sampling designs such as composite sampling, adaptive sampling, and ranked set
sampling, will be discussed in future Agency guidance.
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B.2 CHAPTER 2

Standard statistical quantities and graphical representations are discussed in most introductory
statistics books. 1n addition, Berthouex & Brown (1994) and Madansky (1988) both contain thorough
discussions on the subject. There are aso several textbooks devoted exclusively to graphical representations,
including Cleveland (1993), which may contain the most applicable methods for environmental data, Tufte
(1983), and Chambers, Cleveland, Kleiner and Tukey (1983).

Two EPA sources for temporal data that keep theoretical discussionsto aminimum are U.S. EPA
(1992a) and U.S. EPA (1992b). For amore complete discussion on temporal data, specificaly time series
analysis, see Box and Jenkins (1970), Wei (1990), or Ostrum (1978). These more complete references
provide both theory and practice; however, the assistance of a statistician may be needed to adapt the
methodologies for immediate use. Theoretica discussions of spatial data may be found in Journel and
Huijbregts (1978), Cressie (1993), and Ripley (1981).

B.3 CHAPTER 3

The hypothesis tests covered in this edition of the guidance are well known and straight-forward;
basic statistics texts cover these subjects. Future editions of this guidance will expand on these teststo
include: tests for the mean of skewed distributions, tests for data from ranked set samples, and t-tests for
winsorized or trimmed data.

Besides basic statistical text books, Berthouex & Brown (1994), Hardin and Gilbert (1993), and
U.S. EPA (1989, 1994c) may be useful to the reader. In addition, there are some stati stics books devoted
specificaly to hypothesis testing, for example, see Lehmann (1991). These books may be too theoretical for
most practitioners, and their application to environmental situations may not be obvious.

The statement in this document that the sign test requires approximately 1.225 times as many
observations as the Wilcoxon rank sum test to achieve a given power at agiven significance level is
attributable to Lehmann (1975).

B4 CHAPTER 4

This chapter is essentially a compendium of statitical tests drawn mostly from the primary
references and basic statistics textbooks. Gilbert (1987) and Madansky (1988) have an excellent collection
of techniques and U.S. EPA (1992a) contains techniques specific to water problems.

For Normality (section 4.2), Madansky (1988) has an excellent discussion on tests as does Shapiro
(1986). For trend testing (section 4.3), Gilbert (1987) has an excellent discussion on statistical testsand U.S.
EPA (1992b) provides adjustments for trends and seasonality in the calculation of descriptive statistics.

There are several very good textbooks devoted to the treatment of outliers (section 4.4). Two
authoritative texts are Barnett and Lewis (1978) and Hawkins (1980). Additional information isalso to be
found in Beckman and Cook (1983) and Tietjen and Moore (1972). Several useful software programs are
available on the statistical market including U.S. EPA’s GEO-EASE and Scout, both devel oped by the
Environmental Monitoring Systems Laboratory, Las Vegas, Nevada and described in U.S. EPA (1991) and
U.S. EPA (1993b), respectively.
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Testsfor dispersion (section 4.5) are described in the basic textbooks and examples are to be found
inU.S. EPA (1992a). Transformation of data (section 4.6) is a sensitive topic and thorough discussions may
be found in Gilbert (1987), and Dixon and Massey (1983). Equally sensitive isthe analysis of datawhere
some values are recorded as non-detected (section 4.7); Gibbons (1994) and U.S. EPA (1992a) have relevant
discussions and examples.

B.5 CHAPTER 5

Chapter 5 discusses some of the philosophical issues related to hypothesis testing which may help in
understanding and communicating the test results. Although there are no specific references for this chapter,
many topics (e.g., the use of p-values) are discussed in introductory textbooks. Future editions of this
guidance will be expanded by incorporating practica experiences from the environmental community into
this chapter.
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TableB-1: Selected Referencesfrom Primary and Introductory Textbooks

Subject Section Sour ce (with Chapter)
Measures of Relative Standing 2.2.1 |Dixon& Massey 2-3
Measures of Central Tendency 222 |Wapoeé& Myers6.4, Dixon & Massey 3-1
Measures of Dispersion 2.2.3 |Wadpole & Myers 6.4, Dixon & Massey 3-2
Measures of Association 224 [|Wapole& Myers9.9, Dixon & Massey 11-6
Histogram/Frequency Plots 231 |Wadpole& Myers2.4, Dixon & Massey 2-2
Stem-and-L eaf Plot 2.3.2 |Wapole& Myers2.4
Quantile Plot 235 [|Wapole& Myers2.4
Normal Probability Plot (Q-Q Plot) 2.3.6 |Dixon& Massey 5-4
One-Samplet-Test 3.21 |Wadpole& Myers8.4, Dixon & Massey 7-1
Wilcoxon Signed Rank Test 3.21 [|Wapole& Myers14.3, Dixon & Massey 17-2
One-Sample Proportion Test 3.22 |Wadpole& Myers 8.6, Dixon & Massey 7-2
Two-Samplet-Test 3.3.1 |Wapole& Myers8.4, Dixon & Massey 8-4
Two-Sample Test for Proportions 3.3.2 |Wapole& Myers8.7, Dixon & Massey 13-6
Wilcoxon Rank Sum Test 3.3.3 |Wadpole & Myers14.4, Dixon & Massey 17-4
Shapiro Wilk W Test 422 |Gilbert 12.3.1, EPA (1992a) 1.1.4
Filliben's Statistic 423 |EPA (19923) 1.1.6
Coefficient of Variation Test 4.2.4 |EPA (1992a) 4.2.2
Skewness and Kurtosis Tests 425 |[Madansky 1.4
Geary's Test 4.2.6 |Madansky 1.3
Studentized Range Test 4.2.6 |Madansky 1.3
Goodness-of-Fit Tests 427 |Wadpole& Myers8.9, Dixon & Massey 13-4
Test of a Correlation Coefficient 432 |Wadpole& Myers9.9
Extreme Vaue Test 443 |Dixon& Massey 16-3
Discordance Test 4.4.4 |EPA (1992a) 9-2
Rosner's Test 445 |Gilbert15.3
Walsh's Test 446 |Madansky 4.2
Confidence Intervalsfor aVariance 451 |Wadpole& Myers7.8, Dixon & Massey 7-3
F-Test 452 |Wadpole& Myers8.8, Dixon & Massey 8-3
Bartlett's Test 453 |Wapole& Myers11.3, Dixon & Massey 15-5
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TableB-1: Sdected Referencesfrom Primary and Introductory Textbooks (Continued)

Subject Section | Source (with Chapter)
Levene's Test 454 |EPA (1992a) 1.2
Trimmed Mean & Winsorization 4.7.2 |Dixon & Massey 16-4
Cohen's Adjustment 4.7.2 |EPA (1992a) 8.1.3
Table B-2: Secondary References
Subject Section Source
Profiles 2.3.7 | Wang (1978)
Stars 2.3.7 | Siegd, Goldwyn and Friedman (1971)
Glyphs 2.3.7 Kleiner and Hartigen (1981)
Parallel Coordinate Plots 2.3.7 | Wegman (1990)
W-test 4.2.2 | Shapiroand Wilk (1965)
D'Agostino’s Test 423 | D'Agostino (1971)
Royston’s Test 4.2.3 | Royston (1982)
Filliben's Statistic 4.2.3 | Filliben (1975)
Geary's Test 426 | Geary (1935, 1947)
Studentized range test 4.2.6 | David, Hartley, and Pearson (1954)
Kolmogorov-Smirnoff Test 427 Conover (1980)
LillieforsK-S Test 4.2.7 | Lilliefors (1967, 1969)
Sen's Slope Estimator 433 | Sen(1968a, 1968b)
Extreme Vaue Test 443 | Dixon (1953)
Discordance Test 444 | Grubbs(1969)
Rosner’'s Test 445 | Rosner (1975)
Walsh's Tests 4.4.6 | Walsh (1958 and 1950)
Bartlett's Test 453 | Dixonand Massey (1983)
Cohen’s Method 4.7.2 | Cohen(1959)
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